Displaying all 3 publications

Abstract:
Sort:
  1. Ker-Woon C, Abd Ghafar N, Hui CK, Mohd Yusof YA, Wan Ngah WZ
    BMC Cell Biol., 2015;16:2.
    PMID: 25887200 DOI: 10.1186/s12860-015-0053-9
    Acacia honey (AH) has been proven to improve skin wound healing, but its therapeutic effects on corneal epithelium has not been elucidated to date. This study aimed to investigate the effects of AH on cultured corneal epithelial cells (CEC) on in vitro corneal abrasion wound healing model. Six New Zealand white rabbits' CEC were isolated and cultured until passage 1. Circular wound area was created onto a confluent monolayer CEC using a corneal trephine which mimicked corneal abrasion and treated with 0.025% AH supplemented in basal medium (BM) and complete cornea medium (CCM). Wound healing was measured as the percentage of wound closure by the migration of CEC on day 0, day 3 and day 6, post wound creation. The morphological changes of CEC were assessed via phase contrast microscopy. Gene and protein expressions of cytokeratin (CK3), fibronectin and cluster of differentiation 44 (CD44) in AH treated groups and control groups were determined by real-time PCR and immunocytochemistry, respectively.
    Matched MeSH terms: Keratin-3/metabolism
  2. Lim MN, Hussin NH, Othman A, Umapathy T, Baharuddin P, Jamal R, et al.
    Mol Vis, 2012;18:1289-300.
    PMID: 22665977
    The presence of multipotent human limbal stromal cells resembling mesenchymal stromal cells (MSC) provides new insights to the characteristic of these cells and its therapeutic potential. However, little is known about the expression of stage-specific embryonic antigen 4 (SSEA-4) and the embryonic stem cell (ESC)-like properties of these cells. We studied the expression of SSEA-4 surface protein and the various ESC and MSC markers in the ex vivo cultured limbal stromal cells. The phenotypes and multipotent differentiation potential of these cells were also evaluated.
    Matched MeSH terms: Keratin-3/metabolism
  3. Man RC, Yong TK, Hwei NM, Halim WHWA, Zahidin AZM, Ramli R, et al.
    Mol Vis, 2017;23:810-822.
    PMID: 29225457
    Various clinical disorders and injuries, such as chemical, thermal, or mechanical injuries, may lead to corneal loss that results in blindness. PURPOSE: The aims of this study were to differentiate human buccal mucosa (BMuc) into corneal epithelial-like cells, to fabricate engineered corneal tissue using buccal mucosal epithelial cells, and to reconstruct a damaged corneal epithelium in a nude rat model.

    Methods: BMuc were subjected to 10 d of induction factors to investigate the potential of cells to differentiate into corneal lineages.

    Results: Corneal stem cell markers β1-integrin, C/EBPδ, ABCG2, p63, and CK3 were upregulated in the gene expression analysis in induced BMuc, whereas CK3 and p63 showed significant protein expression in induced BMuc compared to the uninduced cells. BMuc were then left to reach 80% confluency after differential trypsinization. The cells were harvested and cultivated on a commercially available untreated air-dried amniotic membrane (AM) in a Transwell system in induction medium. The corneal constructs were fabricated and then implanted into damaged rat corneas for up to 8 weeks. A significant improvement was detected in the treatment group at 8 weeks post-implantation, as revealed by slit lamp biomicroscopy analysis. The structure and thickness of the corneal layer were also analyzed using histological staining and time-domain optical coherence tomography scans and were found to resemble a native corneal layer. The protein expression for CK3 and p63 were continuously detected throughout the corneal epithelial layer in the corneal construct.

    Conclusions: In conclusion, human BMuc can be induced to express a corneal epithelial-like phenotype. The addition of BMuc improves corneal clarity, prevents vascularization, increases corneal thickness and stromal alignment, and appears to have no adverse effect on the host after implantation.

    Matched MeSH terms: Keratin-3/metabolism
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links