Displaying all 3 publications

Abstract:
Sort:
  1. Arokiaraj P, Yeet Yeang H, Fong Cheong K, Hamzah S, Jones H, Coomber S, et al.
    Plant Cell Rep, 1998 May;17(8):621-625.
    PMID: 30736515 DOI: 10.1007/s002990050454
    Hevea brasiliensis anther calli were genetically transformed using Agrobacterium GV2260 (p35SGUSINT) that harboured the β-glucuronidase (gus) and neomycin phosphotransferase (nptII) genes. β-Glucuronidase protein (GUS) was expressed in the leaves of kanamycin-resistant plants that were regnerated, and the presence of the gene was confirmed by Southern analysis. GUS was also observed to be expressed in the latex and more importantly in the serum fraction. Transverse sections of the leaf petiole from a transformed plant revealed GUS expression to be especially enhanced in the phloem and laticifers. GUS expression was subsequently detected in every one of 194 plants representing three successive vegetative cycles propagated from the original transformant. Transgenic Hevea could thus facilitate the continual production of foreign proteins expressed in the latex.
    Matched MeSH terms: Kanamycin Kinase
  2. Azad MA, Rabbani MG, Amin L, Sidik NM
    Int J Genomics, 2013;2013:235487.
    PMID: 24066284 DOI: 10.1155/2013/235487
    Transgenic papaya plants were regenerated from hypocotyls and immature zygotic embryo after cocultivation with Agrobacterium tumefaciens LBA-4404 carrying a binary plasmid vector system containing neomycin phosphotransferase (nptII) gene as the selectable marker and β-glucuronidase (GUS) as the reporter gene. The explants were co-cultivated with Agrobacterium tumefaciens on regeneration medium containing 500 mg/L carbenicillin + 200 mg/L cefotaxime for one week. The cocultivated explants were transferred into the final selection medium containing 500 mg/L carbenicillin + 200 mg/L cefotaxime + 50 mg/L kanamycin for callus induction as well as plant regeneration. The callus derived from the hypocotyls of Carica papaya cv. Shahi showed the highest positive GUS activities compared to Carica papaya cv. Ranchi. The transformed callus grew vigorously and formed embryos followed by transgenic plantlets successfully. The result of this study showed that the hypocotyls of C. papaya cv. Shahi and C. papaya cv. Ranchi are better explants for genetic transformation compared to immature embryos. The transformed C. papaya cv. Shahi also showed the maximum number of plant regeneration compared to that of C. papaya cv. Ranchi.
    Matched MeSH terms: Kanamycin Kinase
  3. Moussa AA, Md Nordin AF, Hamat RA, Jasni AS
    Infect Drug Resist, 2019;12:3269-3274.
    PMID: 31695445 DOI: 10.2147/IDR.S219544
    Background: Enterococcus faecium and Enterococcus faecalis are among the predominant species causing hospital-acquired infections. Currently, enterococcal infections are treated using combination therapy of an aminoglycoside with cell-wall active agents, which led to high level aminoglycoside resistance (HLAR) and vancomycin resistance (VRE) among enterococci. The aim of this study was to determine the prevalence of HLAR and the distribution of the resistance genes among clinical E. faecalis and E. faecium isolates in Malaysia.

    Materials and methods: Seventy-five enterococci isolates recovered from different clinical sources were re-identified by subculturing on selective medium, Gram staining, biochemical profiling (API 20 Strep), and 16s rRNA sequencing. Antimicrobial susceptibility testing (AST) was performed using Kirby-Bauer disc diffusion, E-test, and broth microdilution methods. PCR amplification was used to detect the presence of aminoglycoside modifying enzyme (AME) genes [aac(6')-Ie-aph(2")-Ia, aph(2")-Ib, aph(2")-Ic, aph(2")-Id, aph(3')-IIIa]. Descriptive data analysis was used to analyze the antibiotic susceptibility profiles and the distribution of HLAR genes.

    Results: The majority of the isolates recovered from the clinical samples are E. faecalis (66.7%), with the highest recovery from the pus. The prevalence of HLGR (51%) is higher when compared to HLSR (45-49%). Analysis of the resistance genes showed that bifunctional genes aac(6')-Ie-aph(2")-Ia and aph(3')-IIIa contributed to the HLAR E. faecalis and E. faecium. The other AME genes [aph(2")-Ib, aph(2")-Ic, aph(2")-Id] were not detected in this study.

    Conclusion: This study provides the first prevalence data on HLAR and the distribution of the AME genes among E. faecalis and E. faecium isolates from Malaysia. These highlight the need for continued antibiotic surveillance to minimize its emergence and further dissemination.

    Matched MeSH terms: Kanamycin Kinase
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links