Displaying all 2 publications

Abstract:
Sort:
  1. Abdul Keyon AS, Guijt RM, Bolch CJ, Breadmore MC
    J Chromatogr A, 2014 Oct 17;1364:295-302.
    PMID: 25223612 DOI: 10.1016/j.chroma.2014.08.074
    The accumulation of paralytic shellfish toxins (PSTs) in contaminated shellfish is a serious health risk making early detection important to improve shellfish safety and biotoxin management. Capillary electrophoresis (CE) has been proven as a high resolution separation technique compatible with miniaturization, making it an attractive choice in the development of portable instrumentation for early, on-site detection of PSTs. In this work, capillary zone electrophoresis (CZE) with capacitively coupled contactless conductivity detector (C(4)D) and UV detection were examined with counter-flow transient isotachophoresis (tITP) to improve the sensitivity and deal with the high conductivity sample matrix. The high sodium concentration in the sample was used as the leading ion while l-alanine was used as the terminating electrolyte (TE) and background electrolyte (BGE) in which the toxins were separated. Careful optimization of the injected sample volume and duration of the counter-flow resulted in limit of detections (LODs) ranging from 74.2 to 1020 ng/mL for tITP-CZE-C(4)D and 141 to 461 ng/mL for tITP-CZE-UV, an 8-97 fold reduction compared to conventional CZE. The LODs were adequate for the analysis of PSTs in shellfish samples close to the regulatory limit. Intra-day and inter-day repeatability values (percentage relative standard deviation, n=3) of tITP-CZE-C(4)D and tITP-CZE-UV methods for both migration time and peak height were in the range of 0.82-11% and 0.76-10%, respectively. The developed method was applied to the analysis of a contaminated mussel sample and validated against an Association of Official Analytical Chemists (AOAC)-approved method for PSTs analysis by high performance liquid chromatography (HPLC) with fluorescence detection (FLD) after pre-column oxidation of the sample. The method presented has potential for incorporation in to field-deployable devices for the early detection of PSTs on-site.
    Matched MeSH terms: Isotachophoresis/methods
  2. Breadmore MC, Wuethrich A, Li F, Phung SC, Kalsoom U, Cabot JM, et al.
    Electrophoresis, 2017 01;38(1):33-59.
    PMID: 27678139 DOI: 10.1002/elps.201600331
    One of the most cited limitations of capillary (and microchip) electrophoresis is the poor sensitivity. This review continues to update this series of biennial reviews, first published in Electrophoresis in 2007, on developments in the field of on-line/in-line concentration methods in capillaries and microchips, covering the period July 2014-June 2016. It includes developments in the field of stacking, covering all methods from field amplified sample stacking and large volume sample stacking, through to isotachophoresis, dynamic pH junction, and sweeping. Attention is also given to on-line or in-line extraction methods that have been used for electrophoresis.
    Matched MeSH terms: Isotachophoresis/methods*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links