The main objective of this study was to characterize the Giardia duodenalis isolates from Iranian patients in Fars Province, south of Iran by biochemical and molecular methods. Fifteen mass cultivated of G. duodenalis isolates in modified TYI-S-33 medium were analyzed using isoenzyme electrophoresis and PCR genotyping. Polyacrylamide gel electrophoresis (PAGE) of five different enzyme systems was used to characterize isolates: (i) glucose-6-phosphate dehydrogenase, (ii) glucose phosphate isomerase, (iii) malate dehydrogenase, (iv) malic enzyme, and (v) phosphoglucomutase. As well, a fragment of the SSU-rDNA (292 bp) gene was amplified by PCR using the primers RH11 and RH4. The sequencing of the PCR products and phylogenetic tree were performed. The isoenzyme electrophoretic profiles divided fifteen G. duodenalis isolates into four zymodemes. G6PD, GPI, MDH, ME, and PGM enzyme systems showed 1, 2, 2, 3, and 3 enzyme pattern, respectively. G6PD isoenzyme pattern had the most homogeneity, while isoenzyme patterns of ME and PGM had the most heterogeneity in our study. Genotyping results indicated that the zymodemes 1-4 were categorized in assemblage A based on the SSU-rDNA gene. Phylogenetic analysis showed that all four zymodemes were distributed within the cluster of assemblage A. Our results indicated that both isoenzyme and DNA analyses were useful to characterize the isolates of Giardia and distinguishing various zymodemes and assemblages. It could be suggested that the genetic diversity among isoenzymes profiles of G. duodenalis may explain the variable clinical manifestations, pathogenicity, host response, drug susceptibility, and treatment efficacy of human giardiasis.
The mosquito, Aedes albopictus, has recently become established in a number of cities throughout the United States. An initial survey of allozyme and genotypic frequencies in U.S. populations (Black et al., 1988) revealed an extensive amount of local differentiation of populations and suggested that much genetic drift may have accompanied colonization. A study of gene flow was initiated in native habitats of Ae. albopictus in Malaysia to determine if the result observed in the U.S. was a consequence of colonization or simply followed the natural breeding structure of the species. Allelic and genotypic frequencies were monitored at ten enzymatic loci in 11 populations from peninsular Malaysia and Borneo. Multiple populations were sampled within the districts of Kuala Lumpur and Kuala Trengganu. Peninsular Malaysian and Borneo populations were strongly genetically differentiated. Allele frequencies were significantly different among and within districts in both regions. Variance in allele frequencies among all collections was partitioned into the variance among regions, districts within regions and collections within districts. Almost all of the variance within regions was attributable to local differentiation suggesting that genetic drift is an important component of the natural breeding structure of this species. This indicates that the large amounts of local differentiation found in U.S. populations was not a consequence of recent colonization.
Isozyme and protein electrophoresis data from mycelial extracts of 27 isolates of Trichoderma harzianum, 10 isolates of T. aureoviride and 10 isolates of T. longibrachiatum from Southern Peninsular Malaysia were investigated. The eight enzyme and a single protein pattern systems were analyzed. Three isozyme and total protein patterns were shown to be useful for the detection of three Trichoderma species. The isozyme and protein data were analyzed using the Nei and Li Dice similarity coefficient for pairwise comparison between individual isolates, species isolate group, and for generating a distance matrix. The UPGMA cluster analysis showed a higher degree of relationship between T. harzianum and T. aureoviride than to T. longibrachiatum. These results suggested that the T. harzianum isolates had high levels of genetic variation compared to the other isolates of Trichoderma species.
It has been widely reported that allozyme frequency variation is a potential indicator of heavy metal-induced impacts in aquatic populations. In the present study, wild populations of horseshoe crab (Carcinoscorpius rotundicauda) were collected from contaminated and uncontaminated sites of Peninsular Malaysia. By adopting horizontal starch gel electrophoresis, seven enzyme systems were used to study allozyme polymorphisms. Nine polymorphic loci were observed in C. rotundicauda. The relationships of allozyme variations with the concentrations of Cd, Cu, Ni, and Zn in sediments and in muscle tissues of horseshoe crabs were determined. Based on genetic distance, the lower mean value of Nei's D (0.017) indicated that both of the contaminated populations of Kg. Pasir Puteh and Kuala Juru were very closely related when compared to the relatively uncontaminated Pantai Lido population. Higher heterozygosities were shown by the contaminated populations when compared to the uncontaminated population. Different allelic frequencies could be observed for the aldolase (ALD; E.C. 2.7.5.1) locus between the contaminated and uncontaminated populations of C. rotundicauda. The dendrogram of genetic relationships of the three populations of C. rotundicauda showed the same clustering pattern as the dendrograms are based on heavy metals in the sediments and in the horseshoe crabs' abdominal muscles. From the F statistics, the present study showed that the three populations of horseshoe crabs were considered to have undergone moderate genetic differentiation with a mean F (ST) value of 0.092 .The current results suggest that allozyme polymorphism in horseshoe crabs is a potential biomonitoring tool for metal contamination, although further validation is required.
To elucidate genetic divergence and evolutionary relationship in Fejervarya cancrivora from Indonesia and other Asian countries, allozyme and molecular analyses were carried out using 131 frogs collected from 24 populations in Indonesia, Thailand, Bangladesh, Malaysia, and the Philippines. In the allozymic survey, seventeen enzymatic loci were examined for 92 frogs from eight representative localities. The results showed that F. cancrivora is subdivided into two main groups, the mangrove type and the large- plus Pelabuhan ratu types. The average Nel's genetic distance between the two groups was 0.535. Molecular phylogenetic trees based on nucleotide sequences of the 16S rRNA and Cyt b genes and constructed with the ML, MP, NJ, and BI methods also showed that the individuals of F. cancrivora analyzed comprised two clades, the mangrove type and the large plus Pelabuhan ratu / Sulawesi types, the latter further split into two subclades, the large type and the Pelabuhan ratu / Sulawesi type. The geographical distribution of individuals of the three F. cancrivora types was examined. Ten Individuals from Bangladesh, Thailand, and the Philippines represented the mangrove type; 34 Individuals from Malaysia and Indonesia represented the large type; and 11 individuals from Indonesia represented the Pelabuhan ratu / Sulawesi type. Average sequence divergences among the three types were 5.78-10.22% for the 16S and 12.88-16.38% for Cyt b. Our results suggest that each of the three types can be regarded as a distinct species.
The present study was conducted to elucidate the genetic divergence and the phylogenetic relationships in the F. limnocharis complex from Bangladesh and other Asian countries such as Sri Lanka, Thailand, Malaysia, Taiwan and Japan by allozyme analyses. We used a total of 95 frogs of the F. limnocharis complex from these countries and F. cancrivora from the Philippines as an outgroup. Based on body size, the F. limnocharis complex from Bangladesh was divided into three distinct groups: large, medium and small types. Allozyme analyses were carried out with 28 loci encoding 20 enzymes and two blood proteins by horizontal starch-gel electrophoresis. When genetic distance was calculated, distinct divergence was found among the three types: mean genetic distance was 0.782 between the small and medium types, 1.458 between the large and medium types, and 1.520 between the large and small types. Phylogenetic trees based on genetic distance showed that all populations of Bangladesh small type strongly formed a cluster and were found to be most closely related to the Sri Lanka population; that all populations of Bangladesh large type formed a very strong cluster and were grouped with several populations from Thailand, Malaysia, Japan, and Taiwan; and that the medium type was segregated from all other groups. This may imply that each of the three types is a different species, and that the medium type is possibly an undescribed taxon.
Shell morphological characters and allozyme electrophoresis were used to study the relationships among six geographical populations of land snails collected from Peninsular Malaysia. Allozyme electrophoresis was used to study the genetic variations to complement the morphological features studied that included shell lengths, numbers of whorls and shell colour. Ten loci coding for six enzymes (MDH, LAP, ALP, PGM, G6PDH and EST) could be reliably scored in samples from the six populations studied. The dendrogram showed two major clusters with one cluster comprising Subulinidae populations from Perak, Selangor, Johor, Terengganu and Pahang while the other cluster included only the Streptaxidae Huttonella bicolor (red) population. The Subulinidae populations were grouped into two subclusters: one subcluster included the Subulina sp. populations from Perak, Selangor an Johor while the other subcluster included the Opeas sp. populations from Terengganu and Pahang. Morphological features can identify the different families and therefore they can complement the allozyme genetic studies on the land snail populations. Like other reports in the literature, our results also underline the importance of a genetic approach in conjunction with a morphological approach, for discriminating land snail species. The present results suggest that small land snails, which were similar in colour but different in sizes, were not of the same family/genus.
The current information on isoenzyme studies of nematode parasites was reviewed. The genetic heterogeneity as reviewed by these studies was highlighted. Application of isoenzyme studies and the role of biotechnological techniques in isoenzyme studies was discussed, and the status of cytogenetic studies on nematode parasites was presented.
The mating system and seed variation of Acacia hybrid (A. mangium x A. auriculiformis) were studied using allozymes and random amplified polymorphic DNA (RAPD) markers, respectively. Multi-locus outcrossing rate estimations indicated that the hybrid was predominantly outcrossed (mean+/- s.e. t(m) = 0.86+/-0.01). Seed variation was investigated using 35 polymorphic RAPD fragments. An analysis of molecular variance (AMOVA) revealed the highest genetic variation among seeds within a pod (66%-70%), followed by among pods within inflorescence (29%-37%), and the least variation among inflorescences within tree (1%). In addition, two to four RAPD profiles could be detected among seeds within pod. Therefore, the results suggest that a maximum of four seeds per pod could be sampled for the establishment of a mapping population for further studies.
A biochemical genetic study of the enzyme malate dehydrogenase (MDH) was conducted in the grasshopper Oxya j. japonica. Analysis of MDH electrophoretic variation in this species of grasshopper shows that one of the two autosomal loci for MDH in grasshoppers, the Mdh-2 locus, controlling the anodal set of MDH isozymes, is duplicated. Results of breeding studies confirm this and the observed polymorphism at the Mdh-2 locus in the two populations of Oxya j. japonica studied can be attributed to three forms of linked alleles at the duplicated locus in equilibrium in both populations. In this respect, all individuals of this species possess heterozygous allelic combinations at the duplicated Mdh-2 locus, which may account for the spread of the duplicated locus in the populations of this species of grasshopper.
We examined allozyme variation in two camaenid tree snails, Amphidromus atricallosus and A. inversus, across two principal regions of Thailand and from Singapore, plus for A. inversus, one site in peninsular Malaysia. Using horizontal starch gel electrophoresis, 13 allozyme loci (11 polymorphic) were screened for A. atricallosus and 18 (5 polymorphic) for A. inversus. Heterozygosity was higher in A. atricallosus (Hexp=0.018-0.201, mean=0.085) than in A. inversus (Hexp=0-0.023, mean= 0.002). Genetic heterogeneity among samples was higher in A. inversus (Fst=0.965) than in A. atricallosus (Fst=0.781). Within A. atricallosus, populations were more differentiated in southern Thailand (Fst=0.551) than in eastern Thailand (Fst=0.144). The high Fst and low Hexp in populations of A. inversus suggest that this species is likely to have experienced a series of strong bottlenecks, perhaps occurring chiefly on offshore continental-shelf islands. The low Fst values of A. atricallosus in eastern Thailand suggest frequent gene flows among populations in this region. The southern and eastern samples of A. atricallosus exhibited fixed allele differences at four loci and great genetic distance (Nei's D=0.485-0.946), suggesting that these two samples may actually represent, or else be evolving into, separate species.
Acid alpha-glucosidase from the placenta was electrophoretically surveyed in a total of 633 Malaysians, 236 of Malay, 261 of Chinese and 136 of Indian ancestries. A new variant, alpha-glucosidase 3-1 was observed in 1 Malay and 3 Indians. A polymorphism for this enzyme was observed among Indians, but in Chinese and Malays variants are rare. Phenotype 2-1 was observed once in a Chinese and once in a Malay.
The technique of isoenzyme electrophoresis was applied to Japanese wild populations of Taenia taeniaeformis (isolated from Norway rats) and three laboratory reared isolates (KRN isolated from a Malaysian Norway rat, BMM from a Belgian house mouse and ACR from a Japanese gray red-backed vole). The average heterozygosities of Japanese wild populations were fairly small and total genetic variability was 0.0499. The genetic make-up of T. taeniaeformis in Norway rats was rather uniform in the whole of Japan. In KRN isolate, each of all 10 loci examined possessed the allele which was predominant in Japanese wild populations. Similarly, each of 9 loci in BMM isolate possessed the same alleles, but one of 2 alleles at HK locus was different from that in the others. T. taeniaeformis parasitizing house mice and rats were considered to be genetically closely related to each other. In ACR isolate, 7 out of 10 loci possessed different alleles from those in the other populations. It was considered that ACR isolate was genetically distant and its phylogenetic origin in Japan should be different from worms parasitizing Norway rats.
Polymorphisms in the cytochrome P (CYP) 450 family may cause adverse drug responses in individuals. Cytochrome P450 2C19 (CYP2C19) is a member of the CYP family, where the presence of the 681 G>A, 636 G>A and 806 C>T polymorphisms result in the CYP2C19*2, CYP2C19*3 and CYP2C19*17 alleles, respectively. In the current study, the frequency of the CYP2C19*2, CYP2C19*3 and CYP2C19*17 alleles in an Iranian population cohort of different ethnicities were examined and then compared with previously published frequencies within other populations. Allelic and genotypic frequencies of the CYP2C19 alleles (*2, *3 and *17) were detected using polymerase chain reaction (PCR)‑restriction fragment length polymorphism analysis, PCR‑single‑strand conformation polymorphism analysis and DNA sequencing from blood samples of 1,229 unrelated healthy individuals from different ethnicities within the Iranian population. The CYP2C19 allele frequencies among the Iranian population were 21.4, 1.7, and 27.1% for the CYP2C19*2, CYP2C19*3 and CYP2C19*17 alleles, respectively. The frequency of the homozygous A/A variant of the CYP2C19*2 allele was significantly high and low in the Lur (P<0.001) and Caspian (P<0.001) ethnicities, respectively. However, the frequency of the homozygous A/A variant of the CYP2C19*3 allele was not detected in the Iranian cohort in the current study. The frequency of the heterozygous G/A variant of the CYP2C19*3 allele had the significantly highest and lowest frequency in the Fars (P<0.001) and Lur (P<0.001) groups, respectively. The allele frequency of the homozygous T/T variant of the CYP2C19*17 allele was significantly high in the Caspian (P<0.001) and low in the Kurd (P<0.05) groups. The frequency of the CYP2C19 alleles involved in drug metabolism, may improve the clinical understanding of the ethnic differences in drug responses, resulting in the advancement of the personalized medicine among the different ethnicities within the Iranian population.
BACKGROUND: Hair roots provide a useful alternative to blood as a source of DNA for genotyping. Besides simple and non-invasive collections, the DNA extraction step is also easy to perform and is fast. The aim of our study is to determine if hair roots can be used to genotype all of the common CYP2D6 alleles for routine screening purposes.
METHOD: The study complies with the Declaration of Helsinki. After obtaining informed consents, both blood and hair samples were collected from 92 patients for genotyping of the CYP2D6 gene. PCR was used to detect the following mutations: CYP2D6*1, *3, *4, *5, *9, *10, *17 and duplication gene. The results were compared where hair roots and blood were used as templates for DNA respectively.
RESULTS: When blood was used as a source of DNA for genotyping, all of the investigated CYP2D6 alleles were successfully amplified. However, with hair roots, the genes with the larger fragment sizes: CYP2D6*5 and the duplication gene could not be amplified and the bands of other alleles investigated were faint when visualized under UV light.
CONCLUSIONS: DNA extraction from hair roots and leucocytes yielded similar results but the DNA extracted from hair roots did not allow successful amplification of the longer genes such as the CYP2D6*5 and the duplication gene.
Human cytochrome P450 2A6 (CYP2A6) is a highly polymorphic isoform of CYP2A subfamily. Our previous kinetic study on four CYP2A6 allelic variants (CYP2A6 15, CYP2A6 16, CYP2A6 21 and CYP2A6 22) have unveiled the functional significance of sequence mutations in these variants on coumarin 7-hydroxylation activity. In the present study, we further explored the ability of a typical CYP2A6 inhibitor, 8-methoxypsoralen (8-MOP), in inhibition of these alleles and we hypothesized that translational mutations in these variants are likely to give impact on 8-MOP inhibitory potency. The CYP2A6 variant and the wild type proteins were subjected to 8-MOP inhibition to yield IC50 values. In general, a similar trend of change in the IC50 and Km values was noted among the four mutants towards coumarin oxidation. With the exception of CYP2A6 16, differences in IC50 values were highly significant which implied compromised interaction of the mutants with 8-MOP. Molecular models of CYP2A6 were subsequently constructed and ligand-docking experiments were performed to rationalize experimental data. Our docking study has shown that mutations have induced enlargement of the active site volume in all mutants with the exception of CYP2A6 16. Furthermore, loss of hydrogen bond between 8-MOP and active site residue Asn297 was evidenced in all mutants. Our data indicate that the structural changes elicited by the sequence mutations could affect 8-MOP binding to yield differential enzymatic activities in the mutant CYP2A6 proteins.
Schistosoma malayensis n. sp., a member of the Schistosoma japonicum complex is described from Rattus muelleri in Peninsular Malaysia and 2 strains are characterized. The only morphological differences noted among adults from natural hosts were that S. malayensis are in general smaller than S. mekongi and S. japonicum. But these differences may be the result of host-induced variations and therefore are of little taxonomic value. To minimize the effects of host-induced variations, adult worms recovered from laboratory mice with similar worm burdens at 50-56 days postinfection were compared. These comparisons revealed only minor morphometric differences among these 3 species. Schistosoma malayensis eggs from naturally and experimentally infected hosts are most similar to those of S. mekongi, with eggs of both species being, in general, smaller than those of S. japonicum. The egg index for S. malayensis is usually higher than for S. japonicum and lower than for S. mekongi. Differences were noted in the developmental rates in mice for 2 isolates of S. malayensis, S. mekongi, and S. japonicum (Philippine strain), but relatively large differences observed between isolates of S. malayensis indicate that, in this case, the developmental rate is not a useful taxonomic character. Schistosoma malayensis is erected principally on the basis of differences, reported elsewhere, in the life histories and in the electrophoretic migration patterns of isoenzymes of adult worms as compared to S. mekongi and S. japonicum. These comparisons indicate that S. malayensis is more closely related to S. mekongi than to S. japonicum.
Studies on hybridization, inheritance, and population genetics of brown planthoppers that infest rice and weeds were undertaken using starch gel electrophoresis to determine whether the weed-infesting population represents a biological race or a species. F(1) and F(2) generations were produced by crosses between parental insects from the two populations with little indication of hybrid sterility. Gpi, Mdh, and Idh loci were inherited in a simple Mendelian fashion in families of two sympatric populations. Sixteen populations of Nilaparvata spp. from eight locations were collected. The Mdh, Idh, Pgm, Gpi, 6Pgd, and Acp loci were polymorphic. The N. lugens of rice with high esterase activity were clustered into a group and characterized by the presence of alleles Gpi (110) and Gpi (120), whereas N. lugens from weeds with low esterase activity were clustered into another group and characterized by Gpi (100) and Gpi (90) . There was a lack of heterozygotes between the common alleles of the two populations. This means that the two groups of individuals belong to different gene pools.
In accordance with detection of a few phospholipase A2 (PLA2) isozyme genes by Southern blot analysis, only two cDNAs, named NnkPLA-I , and NnkPLA-II, encoding group I PLA2s, NnkPLA-I and NnkPLA-II, respectively, were isolated from the venom gland cDNA library of Elapinae Naja naja kaouthia of Malaysia. NnkPLA-I and NnkPLA-II showed four amino acid substitutions, all of which were brought about by single nucleotide substitution. No existence of clones encoding CM-II and CM-III, PLA2 isozymes which had been isolated from the venom of N. naja kaouthia of Thailand, in Malaysian N. naja kaouthia venom gland cDNA library was verified by dot blot hybridization analysis with particular probes. NnkPLA-I and NnkPLA-II differed from CM-II and CM-III with four and two amino acid substitutions, respectively, suggesting that their molecular evolution is regional. The comparison of NnkPLA-I, NnkPLA-II and cDNAs encoding other group I snake venom gland PLA2s indicated that the 5'- and 3'-untranslated regions are more conserved than the mature protein-coding region and that the number of nucleotide substitutions per nonsynonymous site is almost equal to that per synonymous site in the protein-coding region, suggesting that accelerated evolution has occurred in group I venom gland PLA2s possibly to acquire new physiological functions.