MATERIALS AND METHODS: This study aimed are to characterize Bi2O3 particles synthesized at 60, 90 and 120 °C via hydrothermal method and investigated cytotoxicity of cell viability assay, cell morphology analysis, intracellular reactive oxygen species (ROS) assay and expression of ER stress genes by real-time PCR.
RESULTS: Results indicated that the size of rod-shaped Bi2O3 particles increased with rising synthesizing temperatures. The cytotoxicity of Bi2O3 particles in Chang liver cells was size-dependent. Bigger-sized Bi2O3 particles resulted in lesser toxicity effects. mRNA expressions of GRP78 and C/EBP homologous protein (CHOP) were down-regulated in all treated Chang liver cells due to the increasing size of Bi2O3 particles. Bi2O3 particles synthesized at 120 °C was found to be less toxic than iodine.
CONCLUSION: Data suggested that the response of Chang liver cells to Bi2O3 particle cytotoxicity has a significant relationship with its reaction temperatures. This outcome is important in hazard assessment of Bi2O3 particles as a new contrast media and provides better understanding in synthesizing control to enhance its biocompatibility.
MATERIALS AND METHODS: Twenty-four rats were divided into three groups: normal saline, octenidine dihydrochloride and povidone-iodine. Wounds were made on the rats' backs, and A. baumannii germs were inoculated into the wounds. After 3 hours, the wound was irrigated with wound cleansing solution according to the group for 30 seconds. Each wound was taken swab culture before and after wound irrigation and tissue culture 5 hours after wound irrigation.
RESULTS: All specimens showed bacterial colony growth with a median value of 1.22 × 105 CFU before irrigation. Wound irrigation with normal saline did not reduce colony counts, while there was a 3-log reduction to 5-log reduction in the octenidine and povidone-iodine groups. Statistically, there was no significant difference in the mean number of colonies between the octenidine and povidone-iodine groups after irrigation (p = 0.535). However, 3 hours after irrigation, all specimens that experienced 3-log reduction showed regrowth to more than 1 × 105 CFU. In contrast, specimens subjected to 5-log reduction did not exhibit any regrowth.
CONCLUSION: The antiseptic effectiveness of octenidine dihydrochloride is equivalent to povidone-iodine in eradicating A. baumannii colonies in wounds in vivo.
METHODS: The imaging performance of the camera system was assessed quantitatively and qualitatively at different source depths, source to collimator distances (SCD), activity levels, acquisition times and source separations, utilising bespoke phantoms.
RESULTS: The system sensitivity and spatial resolution of the HGC for 125I were 0.41 cps/MBq (at SCD 48 mm) and 1.53 ± 0.23 mm (at SCD 10 mm) respectively. The camera was able to detect the 125I seed at a SCD of 63 mm (with no scattering material in place) in images recorded within a 1-min acquisition time. The detection of the seeds beneath scattering material (simulating deep-seated tumours) was limited to depths of less than 20 mm beneath the skin surface with a SCD of 63 mm and seed activity of 2.43 MBq. Subjective assessments of the hybrid images acquired showed the capability of the HGC for localising the 125I seeds.
CONCLUSION: This preliminary ex vivo study demonstrates that the HGC is capable of detecting 125I seeds and could be a useful tool in radioactive seed localisation with the added benefit of providing hybrid optical γ images for guiding breast conserving surgery.
ADVANCES IN KNOWLEDGE: The SFOV HGC could provide high resolution fused optical-gamma images of 125I radioactive seeds indicating the potential use in intraoperative surgical procedure such as RSL.
AIM: To investigate the effect of four commonly used wound care regimens on the tensile strength of suture materials.
METHODS: The failure load of 9 different suture materials was tested using the Instron Electroplus E3000 tensile testing machine (Instron Corporation, Norwood, Massachusetts). Tensile strength was represented as the failure load, measured in Newtons (N), and defined as the maximal load that could be applied across the suture prior to failure. Each suture was tested dry and after immersion in one of 4 products for 7 days and tested on day 7. The immersion agents tested were: sodium chloride 0.9%, MicroSafe® (Sonoma Pharmaceuticals, Petaluma, CA), Aqueous Povidone-iodine 10% solution (Betadine-Mundipharma), and Fucidin ointment.
RESULTS: Sodium chloride 0.9%, MicroSafe®, Aqueous Povidone-iodine 10%, and Fucidin seem to increase the failure load of most absorbable and non-absorbable sutures. However, the failure load of Polyglactin 910 suture (Surgilactin, coated, violet-Ethicon) is reduced by long-term exposure to either sodium chloride 0.9% or MicroSafe®, while the failure load of the Polydioxanone suture (PDS Plus-Ethicon) is reduced by long-term exposure to MicroSafe® only.
CONCLUSION: In our experiment, the commonly used wound care products have been shown to alter the tensile strength of suture materials. Further human studies are required to ascertain the clinical validity and applicability of our findings.