Displaying all 2 publications

Abstract:
Sort:
  1. Azrina MZ, Yap CK, Rahim Ismail A, Ismail A, Tan SG
    Ecotoxicol Environ Saf, 2006 Jul;64(3):337-47.
    PMID: 15964072
    A study of the impacts of anthropogenic activities on the distribution and biodiversity of benthic macroinvertebrates and water quality of the Langat River (Peninsular Malaysia) was conducted. Four pristine stations from the upstream and 4 stations at the downstream receiving anthropogenic impacts were selected along the river. For 4 consecutive months (March-June 1999), based on the Malaysian DOE (Malaysia Environmental Quality Report 2000, Department of Environment, Ministry of Science, Technology and Environment Malaysia. Maskha Sdn. Bhd. Kuala Lumpur, 86pp; Malaysia Environmental Quality Report 2001, Department of Environment, Ministry of Science, Technology and the Environment Malaysia) water quality index classes, the upstream stations recorded significantly (P<0.05) higher Biological Monitoring Working Party scores and better water quality indices than those of the downstream. The total number of macrobenthic taxa and their overall richness indices and diversity indices were significantly (P<0.05) higher at the upstream stations (54 taxa) than at the downstream stations (5 taxa). The upstream of the Langat River was dominated by Ephemeroptera and chironomid dipterans while other orders found in small quantities included Trichoptera, Diptera, Plecoptera, Odonata, Ephemeraptera, Coleoptera, and Gastropoda. On the other hand, the downstream of the river was mainly inhabited by the resistant Oligochaeta worms Limnodrilus spp. and Branchiodrilus sp. and Hirudinea in small numbers. The relationships between the physicochemical and the macrobenthic data were investigated by Pearson correlation analysis and multiple stepwise regression analysis. These statistical analyses showed that the richness and diversity indices were generally influenced by the total suspended solids and the conductivity of the river water. This study also highlighted the impacts of anthropogenic land-based activities such as urban runoff on the distribution and species diversity of macrobenthic invertebrates in the downstream of the Langat River. The data obtained in this study supported the use of the bioindicator concept for Malaysian rivers. Some sensitive (Trichopteran caddisflies and Ephemeraptera) and resistant species (Oligochaeta such as Limnodrilus spp.) are identified as potential bioindicators of clean and polluted river ecosystems, respectively, for Malaysian rivers.
    Matched MeSH terms: Invertebrates/drug effects*
  2. Ramachandran S, Patel TR, Colbo MH
    Ecotoxicol Environ Saf, 1997 Mar;36(2):183-8.
    PMID: 9126437
    Three species of tropical estuarine invertebrates were exposed to copper sulfate and cadmium chloride to investigate their potential as test specimens for sediment toxicity assays in the South-east Asian regions. The larvae of the reef sea urchin (Diadema setosum), the oyster (Crassostrea iradalei), and the mud crab (Scylla seratta Forskall) were used in the 48-hr assays with copper and cadmium as reference toxicants. In addition the sea urchin were tested for end point measurements at different stages of the larval development and a 60-min sperm bioassay. The study revealed that the sea urchin first cleavage, which is an assay end point and which takes place about 1 hr after fertilization, was the most sensitive stage for both toxicants, with copper being more toxic than cadmium. Sensitivity comparisons between the three invertebrate larvae revealed the mud crab zoea larvae to be most sensitive for cadmium with an LC50 value of 0.078 microgram/ml, while the sea urchin was more sensitive for copper, with EC50 values of 0.01 microgram/ml at the first cleavage stage and 0.04 microgram/ml at the pluteus larva stage. All the invertebrates tested gave responses that made them suitable test organisms for metal bioassays in the tropical estuarine environment.
    Matched MeSH terms: Invertebrates/drug effects*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links