Displaying all 4 publications

Abstract:
Sort:
  1. Kalyanasundram J, Chia SL, Song AA, Raha AR, Young HA, Yusoff K
    BMC Biotechnol, 2015;15:113.
    PMID: 26715153 DOI: 10.1186/s12896-015-0231-z
    The exploitation of the surface display system of food and commensal lactic acid bacteria (LAB) for bacterial, viral, or protozoan antigen delivery has received strong interest recently. The Generally Regarded as Safe (GRAS) status of the Lactococcus lactis coupled with a non-recombinant strategy of in-trans surface display, provide a safe platform for therapeutic drug and vaccine development. However, production of therapeutic proteins fused with cell-wall anchoring motifs is predominantly limited to prokaryotic expression systems. This presents a major disadvantage in the surface display system particularly when glycosylation has been recently identified to significantly enhance epitope presentation. In this study, the glycosylated murine Tyrosinase related protein-2 (TRP-2) with the ability to anchor onto the L. lactis cell wall was produced in suspension adapted Chinese Hamster Ovary (CHO-S) cells by expressing TRP-2 fused with cell wall anchoring LysM motif (cA) at the C-terminus.
    Matched MeSH terms: Intramolecular Oxidoreductases/metabolism*
  2. Ahmad W, Kumolosasi E, Jantan I, Bukhari SN, Jasamai M
    Chem Biol Drug Des, 2014 Jun;83(6):670-81.
    PMID: 24406103 DOI: 10.1111/cbdd.12280
    Arachidonic acid and its metabolites have generated a heightened interest due to their significant role in inflammation. Inhibiting the enzymes involved in arachidonic acid metabolism has been considered as the synergistic anti-inflammatory effect. A series of novel curcumin diarylpentanoid analogues were synthesized and evaluated for their inhibitory effects on activity of secretory phospholipase A2 , cyclooxygenases, soybean lipo-oxygenase as well as microsomal prostaglandin E synthase-1. Among the curcumin analogues, compounds 3, 6, 9, 12, and 17 exhibited strong inhibition of secretory phospholipase A2 activity, with IC50 values ranging from 5.89 to 11.02 μm. Seven curcumin analogues 1, 3, 6, 7, 9, 11, and 12 showed inhibition of cyclooxygenases-2 with IC50 values in the range of 46.11 to 94.86 μm, which were lower than that of curcumin. Compounds 3, 6, 7, 12, and 17 showed strong inhibition of lipo-oxygenase enzyme activity. Preliminary screening of diarylpentanoid curcumin analogues for microsomal prostaglandin E synthase-1 activity revealed that four diarylpentanoid curcumin analogues 5, 6, 7, and 13 demonstrated higher inhibition of microsomal prostaglandin E synthase-1 activity with IC50 ranging from 2.41 to 4.48 μm, which was less than that of curcumin. The present results suggest that some of these diarylpentanoid analogues were able to inhibit the activity of these enzymes. This raises the possibility that diarylpentanoid analogues of curcumin might serve as useful starting point for the design of improved anti-inflammatory agents.
    Matched MeSH terms: Intramolecular Oxidoreductases/metabolism*
  3. Thent ZC, Chakraborty C, Mahakkanukrauh P, Nik Ritza Kosai Nik Mahmood N, Rajan R, Das S
    Curr Drug Targets, 2017;18(11):1250-1258.
    PMID: 27138760 DOI: 10.2174/1389450117666160502151600
    BACKGROUND: Recently, there are scientific attempts to discover new drugs in the biotechnology industry in order to treat various diseases including atherosclerosis.

    OBJECTIVE: The main objective of the present review was to highlight the cellular, molecular biology and inflammatory process related to the atheromatous plaques.

    METHODS: A thorough literature search of Pubmed, Google and Scopus databases was done.

    RESULTS: Atherosclerosis is considered to be a leading cause of death throughout the world. Atherosclerosis involves oxidative damage to the cells with production of reactive oxygen species (ROS). Development of atheromatous plaques in the arterial wall is a common feature. Specific inflammatory markers pertaining to the arterial wall in atherosclerosis may be useful for both diagnosis and treatment. These include Nitric oxide (NO), cytokines, macrophage inhibiting factor (MIF), leucocytes and Pselectin. Modern therapeutic paradigms involving endothelial progenitor cells therapy, angiotensin II type-2 (AT<sub>2</sub>R) and ATP-activated purinergic receptor therapy are notable to mention.

    CONCLUSION: Future drugs may be designed aiming three signalling mechanisms of AT<sub>2</sub>R which are (a) activation of protein phosphatases resulting in protein dephosphorylation (b) activation of bradykinin/nitric oxide/cyclic guanosine 3&#039;,5&#039;-monophosphate pathway by vasodilation and (c) stimulation of phospholipase A(2) and release of arachidonic acid. Drugs may also be designed to act on ATP-activated purinergic receptor channel type P2X7 molecules which acts on cardiovascular system.

    Matched MeSH terms: Intramolecular Oxidoreductases/metabolism
  4. Rullah K, Mohd Aluwi MF, Yamin BM, Abdul Bahari MN, Wei LS, Ahmad S, et al.
    Bioorg Med Chem Lett, 2014 Aug 15;24(16):3826-34.
    PMID: 25027933 DOI: 10.1016/j.bmcl.2014.06.061
    The discovery of potent inhibitors of prostaglandin E2 (PGE2) synthesis in recent years has been proven to be an important game changer in pharmaceutical industry. It is known that excessive production of PGE2 triggers a vast array of biological signals and physiological events that contributes to inflammatory diseases such as rheumatoid arthritis, atherosclerosis, cancer, and pain. In this Letter, we report the synthesis of a series of minor prenylated chalcones and flavonoids which was found to be significantly active in suppressing the PGE2 production secreted by lipopolysaccharide-induced mouse macrophage cells (RAW 264.7). Among the compounds tested, 14b showed a dose-response inhibition of PGE2 production with an IC50 value of 2.1 μM. The suppression upon PGE2 secretion was not due to cell death since 14b did not reduce the cell viability in close proximity to the PGE2 inhibition concentration. The obtained atomic coordinates for the single-crystal XRD of 14b was then applied in the docking simulation to determine the potential important binding interactions with murine COX-2 and mPGES-1 putative binding sites.
    Matched MeSH terms: Intramolecular Oxidoreductases/metabolism
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links