Displaying all 10 publications

Abstract:
Sort:
  1. Langmia IM, Apalasamy YD, Omar SZ, Mohamed Z
    Pharmacogenet Genomics, 2016 Nov;26(11):505-509.
    PMID: 27602547
    OBJECTIVE: Genetic factors influence susceptibility to preterm birth (PTB) and the immune pathway of PTB that involves the production of cytokines such as interleukins has been implicated in PTB disease. The aim of this study is to investigate the association of interleukin 1β (IL1B) gene polymorphisms and IL1B levels with spontaneous PTB.

    STUDY DESIGN: Peripheral maternal blood from 495 women was used for extraction of DNA and genotyping was carried out using the Sequenom MassARRAY platform. Maternal plasma was used to measure IL1B levels.

    RESULTS: There was no significant association between the allelic and genotype distribution of IL1B single nucleotide polymorphism (SNP) (rs1143634, rs1143627, rs16944) and the risk of PTB among Malaysian Malay women (rs1143634, P=0.722; rs1143627, P=0.543; rs16944, P=0.615). However, IL1B levels were significantly different between women who delivered preterm compared with those who delivered at term (P=0.030); high mean levels were observed among Malay women who delivered at preterm (mean=32.52) compared with term (mean=21.68). IL1B SNPs were not associated with IL1B plasma levels.

    CONCLUSION: This study indicates a significant association between IL1B levels and reduced risk of PTB among the Malaysian Malay women. This study shows the impact of IL1B levels on susceptibility to PTB disease; however, the high levels of IL1B observed among women in the preterm group are not associated with IL1B SNPs investigated in this study; IL1B high levels may be because of other factors not explored in this study and therefore warrant further investigation.

    Matched MeSH terms: Interleukin-1beta/genetics*
  2. Chauhan I, Beena VT, Srinivas L, Sathyan S, Banerjee M
    J Interferon Cytokine Res, 2013 Aug;33(8):420-7.
    PMID: 23651237 DOI: 10.1089/jir.2012.0115
    Oral lichen planus (OLP) is a chronic mucocutaneous condition that affects the oral mucous membrane as well as skin. It is a chronic cell-mediated autoimmune condition where the T-cell-mediated immune response plays an important part in the pathogenesis by causing damage to basal keratinocytes in oral mucosa. Cytokine gene polymorphisms have an unquestionable role in the orchestration of the immune response, leading to different functional scenarios, which in turn influence the outcome of the disease establishment and evolution. The purpose of this study was to understand the role of these cytokine gene polymorphisms in the tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), and IL-6 genes with OLP in 101 individuals of Malayalam-speaking ethnicity from South India (Kerala). We further investigated the role of these polymorphisms in patients suffering from OLP with other comorbid factors. Genotyping was carried out by polymerase chain reaction-restriction fragment length polymorphism. The results demonstrate that the A allele in the TNF-α -308 polymorphism could play an important role in the susceptibility to OLP. IL-1β +3954 in OLP was associated with other comorbid factors in both allelic and genotypic combinations. However, when patients suffering from OLP were stratified to understand the involvement of other comorbid factors, we observed that the T and C alleles were independent risk factors for chronic periodontitits and diabetes mellitus. On the other hand, IL-6 -597 did not show any disease association with OLP in the study population. This study indicates that proinflammatory cytokines are an important factor in understanding the disease burden of OLP and their comorbid factors.
    Matched MeSH terms: Interleukin-1beta/genetics*
  3. Ching JJ, Shuib AS, Abdullah N, Majid NA, Taufek NM, Sutra J, et al.
    Fish Shellfish Immunol, 2021 Sep;116:61-73.
    PMID: 34157396 DOI: 10.1016/j.fsi.2021.06.005
    In aquaculture, commercial fish such as red hybrid tilapia are usually raised at high density to boost the production within a short period of time. This overcrowded environment, however, may cause stress to the cultured fish and increase susceptibility to infectious diseases. Antibiotics and chemotherapeutics are used by fish farmers to overcome these challenges, but this may increase the production cost. Studies have reported on the potential of mushroom polysaccharides that can act as immunostimulants to enhance the immune response and disease resistance in fish. In the current study, hot water extract (HWE) from mushroom stalk waste (MSW) was used to formulate fish feed and hence administered to red hybrid tilapia to observe the activation of immune system. Upon 30 days of feeding, the fish were challenged with pathogen-associated molecular patterns (PAMPs) such as lipopolysaccharides (LPS) and polyinosinic:polycytidylic acid (poly (I:C)) to mimic bacterial and viral infection, respectively. HWE supplementation promoted better feed utilisation in red hybrid tilapia although it did not increase the body weight gain and specific growth rate compared to the control diet. The innate immunological parameters such as phagocytic activity and respiratory burst activity were significantly higher in HWE-supplemented group than that of the control group following PAMPs challenges. HWE-supplemented diet also resulted in higher mRNA transcription of il1b and tnfa in midgut, spleen and head kidney at 1-day post PAMPs injection. Tlr3 exhibited the highest upregulation in the HWE fed fish injected with poly (I:C). At 3-days post PAMPs injection, both ighm and tcrb expression were upregulated significantly in the spleen and head kidney. Results showed that HWE supplementation enhances the immune responses of red hybrid tilapia and induced a higher serum bactericidal activity against S. agalactiae.
    Matched MeSH terms: Interleukin-1beta/genetics
  4. Che Ahmad Tantowi NA, Hussin P, Lau SF, Mohamed S
    Menopause, 2017 Sep;24(9):1071-1080.
    PMID: 28640163 DOI: 10.1097/GME.0000000000000882
    OBJECTIVE: Ficus deltoidea Jack (mistletoe fig) is an ornamental plant found in various parts of the world and used as traditional herbal medicine in some countries. This study investigated the potential use of F deltoidea leaf extract to mitigate osteoarthritis (OA) in ovariectomized (estrogen-deficient postmenopausal model) rats and the mechanisms involved. Diclofenac was used for comparison.

    METHODS: Sprague-Dawley female rats (12 weeks old) were divided randomly into five groups (n = 6): healthy; nontreated OA; OA + diclofenac (5 mg/kg); OA + extract (200 mg/kg); and OA + extract (400 mg/kg). Two weeks after bilaterally ovariectomy, OA was induced by intra-articular injection of monosodium iodoacetate into the right knee joints. After 28 days of treatment, the rats were evaluated for knee OA via physical (radiological and histological observations), biochemical, enzyme-linked immunosorbent assay, and gene expression analysis, for inflammation and cartilage degradation biomarkers.

    RESULTS: The osteoarthritic rats treated with the extract, and diclofenac showed significant reduction of cartilage erosion (via radiological, macroscopic, and histological images) compared with untreated osteoarthritic rats. The elevated serum interleukin-1β, prostaglandin E2, and C-telopeptide type II collagen levels in osteoarthritic rats were significantly reduced by F deltoidea leaf extract comparable to diclofenac. The extract significantly down-regulated the interleukin-1β, prostaglandin E2 receptor, and matrix metalloproteinase-1 mRNA expressions in the osteoarthritic cartilages, similar to diclofenac.

    CONCLUSIONS: F deltoidea leaf extract mitigated postmenopausal osteoarthritic joint destruction by inhibiting inflammation and cartilage degradation enzymes, at an effective extract dose equivalent to about 60 mg/kg for humans. The main bioactive compounds are probably the antioxidative flavonoids vitexin and isovitexin.

    Matched MeSH terms: Interleukin-1beta/genetics
  5. Rahiman SSF, Morgan M, Gray P, Shaw PN, Cabot PJ
    Peptides, 2017 04;90:48-54.
    PMID: 28219695 DOI: 10.1016/j.peptides.2017.02.004
    Dynorphin 1-17 (DYN 1-17) is biotransformed rapidly to a range of fragments in rodent inflamed tissue with dynorphin 3-14 (DYN 3-14) being the most stable and prevalent. DYN 1-17 has been shown previously to be involved in the regulation of inflammatory response following tissue injury, in which the biotransformation fragments of DYN 1-17 may possess similar features. This study investigated the effects of DYN 3-14 on lipopolysaccharide (LPS)-induced nuclear factor-kappaB/p65 (NF-κB/p65) nuclear translocation and the release of pro-inflammatory cytokines interleukin-1beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) in differentiated THP-1 cells. Treatment with DYN 3-14 (10nM) resulted in 35% inhibition of the LPS-induced nuclear translocation of NF-κB/p65. Furthermore, DYN 3-14 modulated both IL-1β and TNF-α release; inhibiting IL-1β and paradoxically augmenting TNF-α release in a concentration-independent manner. A number of opioids have been implicated in the modulation of the toll-like receptor 4 (TLR4), highlighting the complexity of their immunomodulatory effects. To determine whether DYN 3-14 modulates TLR4, HEK-Blue™-hTLR4 cells were stimulated with LPS in the presence of DYN 3-14. DYN 3-14 (10μM) inhibited TLR4 activation in a concentration-dependent fashion by suppressing the LPS signals around 300-fold lower than LPS-RS, a potent TLR4 antagonist. These findings indicate that DYN 3-14 is a potential TLR4 antagonist that alters cellular signaling in response to LPS and cytokine release, implicating a role for biotransformed endogenous opioid peptides in immunomodulation.
    Matched MeSH terms: Interleukin-1beta/genetics
  6. Ahn M, Anderson DE, Zhang Q, Tan CW, Lim BL, Luko K, et al.
    Nat Microbiol, 2019 05;4(5):789-799.
    PMID: 30804542 DOI: 10.1038/s41564-019-0371-3
    Bats are special in their ability to host emerging viruses. As the only flying mammal, bats endure high metabolic rates yet exhibit elongated lifespans. It is currently unclear whether these unique features are interlinked. The important inflammasome sensor, NLR family pyrin domain containing 3 (NLRP3), has been linked to both viral-induced and age-related inflammation. Here, we report significantly dampened activation of the NLRP3 inflammasome in bat primary immune cells compared to human or mouse counterparts. Lower induction of apoptosis-associated speck-like protein containing a CARD (ASC) speck formation and secretion of interleukin-1β in response to both 'sterile' stimuli and infection with multiple zoonotic viruses including influenza A virus (-single-stranded (ss) RNA), Melaka virus (PRV3M, double-stranded RNA) and Middle East respiratory syndrome coronavirus (+ssRNA) was observed. Importantly, this reduction of inflammation had no impact on the overall viral loads. We identified dampened transcriptional priming, a novel splice variant and an altered leucine-rich repeat domain of bat NLRP3 as the cause. Our results elucidate an important mechanism through which bats dampen inflammation with implications for longevity and unique viral reservoir status.
    Matched MeSH terms: Interleukin-1beta/genetics
  7. Omidbakhsh R, Rajabli B, Nasoohi S, Khallaghi B, Mohamed Z, Naidu M, et al.
    Exp Brain Res, 2014 Nov;232(11):3687-96.
    PMID: 25098558 DOI: 10.1007/s00221-014-4052-4
    Lipopolysaccharide is an endotoxin to induce sickness behavior in several animal models to explore the link between immune activation and cognition. Neuroinflammation playing a pivotal role in disease progress is evidently influenced by sphingosine-1-phosphate. As one of the sphingosine analogs in clinical use for multiple sclerosis, fingolimod (FTY720) was shown to substantially affect gene expression profile in the context of AD in our previous experiments. The present study was designed to evaluate the drug efficacy in the context of the mere inflammatory context leading to memory impairment. FTY720 was repeatedly administered for a few days before or after intracerebral lipopolysaccharide (LPS) injection in rats. Animal's brains were then assigned to histological as well as multiplex mRNA assay following memory performance test. Both FTY720 pre-treatment and post-treatment were similarly capable of ameliorating LPS-induced memory impairment as assessed by passive avoidance test. Such amending effects may be partly accountable by the concomitant alterations in transcriptional levels of mitogen-activated protein kinases as well as inflammatory genes determined by QuantiGene Plex analysis. These findings confirming FTY720 application benefits suggest its efficacy may not differ significantly while considered either as a preventive or as a therapeutic approach against neuroinflammation.
    Matched MeSH terms: Interleukin-1beta/genetics
  8. Lee KH, Chow YL, Sharmili V, Abas F, Alitheen NB, Shaari K, et al.
    Int J Mol Sci, 2012;13(3):2985-3008.
    PMID: 22489138 DOI: 10.3390/ijms13032985
    Our preliminary screening has shown that curcumin derivative BDMC33 [2,6-bis(2,5-dimethoxybenzylidene)cyclohexanone] exerted promising nitric oxide inhibitory activity in activated macrophages. However, the molecular basis and mechanism for its pharmacological action is yet to be elucidated. The aim of this study was to investigate the anti-inflammatory properties of BDMC33 and elucidate its underlying mechanism action in macrophage cells. Our current study demonstrated that BDMC33 inhibits the secretion of major pro-inflammatory mediators in stimulated macrophages, and includes NO, TNF-α and IL-1β through interference in both nuclear factor kappaB (NF-κB) and mitogen activator protein kinase (MAPK) signaling cascade in IFN-γ/LPS-stimulated macrophages. Moreover, BDMC33 also interrupted LPS signaling through inhibiting the surface expression of CD-14 accessory molecules. In addition, the inhibitory action of BDMC33 not only restricted the macrophages cell (RAW264.7), but also inhibited the secretion of NO and TNF-α in IFN-γ/LPS-challenged microglial cells (BV-2). The experimental data suggests the inflammatory action of BDMC33 on activated macrophage-like cellular systems, which could be used as a future therapeutic agent in the management of chronic inflammatory diseases.
    Matched MeSH terms: Interleukin-1beta/genetics
  9. Sarkar S, Leo BF, Carranza C, Chen S, Rivas-Santiago C, Porter AE, et al.
    PLoS One, 2015;10(11):e0143077.
    PMID: 26580078 DOI: 10.1371/journal.pone.0143077
    Exposure to silver nanoparticles (AgNP) used in consumer products carries potential health risks including increased susceptibility to infectious pathogens. Systematic assessments of antimicrobial macrophage immune responses in the context of AgNP exposure are important because uptake of AgNP by macrophages may lead to alterations of innate immune cell functions. In this study we examined the effects of exposure to AgNP with different particle sizes (20 and 110 nm diameters) and surface chemistry (citrate or polyvinlypyrrolidone capping) on cellular toxicity and innate immune responses against Mycobacterium tuberculosis (M.tb) by human monocyte-derived macrophages (MDM). Exposures of MDM to AgNP significantly reduced cellular viability, increased IL8 and decreased IL10 mRNA expression. Exposure of M.tb-infected MDM to AgNP suppressed M.tb-induced expression of IL1B, IL10, and TNFA mRNA. Furthermore, M.tb-induced IL-1β, a cytokine critical for host resistance to M.tb, was inhibited by AgNP but not by carbon black particles indicating that the observed immunosuppressive effects of AgNP are particle specific. Suppressive effects of AgNP on the M.tb-induced host immune responses were in part due to AgNP-mediated interferences with the TLR signaling pathways that culminate in the activation of the transcription factor NF-κB. AgNP exposure suppressed M.tb-induced expression of a subset of NF-κB mediated genes (CSF2, CSF3, IFNG, IL1A, IL1B, IL6, IL10, TNFA, NFKB1A). In addition, AgNP exposure increased the expression of HSPA1A mRNA and the corresponding stress-induced Hsp72 protein. Up-regulation of Hsp72 by AgNP can suppress M.tb-induced NF-κB activation and host immune responses. The observed ability of AgNP to modulate infectious pathogen-induced immune responses has important public health implications.
    Matched MeSH terms: Interleukin-1beta/genetics
  10. Kim JK, Choi E, Hong YH, Kim H, Jang YJ, Lee JS, et al.
    J Ethnopharmacol, 2021 May 10;271:113887.
    PMID: 33539951 DOI: 10.1016/j.jep.2021.113887
    ETHNOPHARMACOLOGICAL RELEVANCE: Melicope accedens (Blume) Thomas G. Hartley is a plant included in the family Rutaceae and genus Melicope. It is a native plant from Vietnam that has been used for ethnopharmacology. In Indonesia and Malaysia, the leaves of M. accedens are applied externally to decrease fever.

    AIM OF THE STUDY: The molecular mechanisms of the anti-inflammatory properties of M. accedens are not yet understood. Therefore, we examined those mechanisms using a methanol extract of M. accedens (Ma-ME) and determined the target molecule in macrophages.

    MATERIALS AND METHODS: We evaluated the anti-inflammatory effects of Ma-ME in lipopolysaccharide (LPS)-stimulated RAW264.7 cells and in an HCl/EtOH-triggered gastritis model in mice. To investigate the anti-inflammatory activity, we performed a nitric oxide (NO) production assay and ELISA assay for prostaglandin E2 (PGE2). RT-PCR, luciferase gene reporter assays, western blotting analyses, and a cellular thermal shift assay (CETSA) were conducted to identify the mechanism and target molecule of Ma-ME. The phytochemical composition of Ma-ME was analyzed by HPLC and LC-MS/MS.

    RESULTS: Ma-ME suppressed the production of NO and PGE2 and the mRNA expression of proinflammatory genes (iNOS, IL-1β, and COX-2) in LPS-stimulated RAW264.7 cells without cytotoxicity. Ma-ME inhibited NF-κB activation by suppressing signaling molecules such as IκBα, Akt, Src, and Syk. Moreover, the CETSA assay revealed that Ma-ME binds to Syk, the most upstream molecule in the NF-κB signal pathway. Oral administration of Ma-ME not only alleviated inflammatory lesions, but also reduced the gene expression of IL-1β and p-Syk in mice with HCl/EtOH-induced gastritis. HPLC and LC-MS/MS analyses confirmed that Ma-ME contains various anti-inflammatory flavonoids, including quercetin, daidzein, and nevadensin.

    CONCLUSIONS: Ma-ME exhibited anti-inflammatory activities in vitro and in vivo by targeting Syk in the NF-κB signaling pathway. Therefore, we propose that Ma-ME could be used to treat inflammatory diseases such as gastritis.

    Matched MeSH terms: Interleukin-1beta/genetics
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links