Displaying all 6 publications

Abstract:
Sort:
  1. Chai BY, Yip WK, Dusa N, Mohtarrudin N, Seow HF
    Pathol Oncol Res, 2020 Oct;26(4):2291-2298.
    PMID: 32462420 DOI: 10.1007/s12253-020-00820-4
    Interleukin-17 (IL-17) is a pro-inflammatory cytokine found in various cancers. Current evidence indicates that IL-17 plays a vital role in tumour initiation and progression in colorectal carcinoma (CRC) via binding with its receptor, IL-17RA. However, the association between clinicopathological features and presence of IL-17 and IL-17RA protein in primary CRC tissues remains unclear. This study also investigates the difference between the presence of IL-17 and IL-17RA in the paired tumour tissues versus adjacent normal tissues. The presence of IL-17RA and IL-17 protein in primary CRC tissues was determined by immunohistochemistry. Associations between clinicopathological features and IL-17RA and IL-17 immunoreactivity, were analyzed by χ2 tests. We found that both IL-17RA (p = 0.001) and IL-17 (p = 0.025) in tumour cells of primary CRC tissues was significantly lower as compared to adjacent normal tissue. Positive immunoreactivity for IL-17RA and IL-17 were detected in 51.0% and 16.8% of tumour tissues, respectively. Furthermore, negative immunoreactivity of IL-17R was significantly associated with advanced stage according to TNM classifier (p = 0.027), high grade of tumour (p = 0.019), increased depth of tumour invasion (p = 0.023) and vascular invasion (p = 0.039). Positive IL-17 immunoreactivity was associated with advanced stage (p = 0.008) and lymph node metastasis (p = 0.008). Thus, this study suggests that the loss of IL-17RA expression occurs as tumour progresses and this may predict the aggressiveness of tumour whilst expression of IL-17 promotes tumour progression and lymph node metastasis. Thus, loss of IL-17RA could be a useful prognostic biomarker for tumour progression in CRC patients.
    Matched MeSH terms: Interleukin-17/metabolism*; Receptors, Interleukin-17/metabolism*
  2. Isa H, Luthert P, Rose G, Verity D, Pusey C, Tomkins-Netzer O, et al.
    Ophthalmology, 2015 Oct;122(10):2140-2.
    PMID: 26116342 DOI: 10.1016/j.ophtha.2015.04.016
    Matched MeSH terms: Interleukin-17/metabolism*
  3. Tiong KI, Mohd Zahidin AZ, Sumugam SKA, Uchang J, Mohd Isa HD
    Asia Pac J Ophthalmol (Phila), 2017;6(5):403-406.
    PMID: 28868833 DOI: 10.22608/APO.2017134
    PURPOSE: To compare the interleukin-17 (IL-17) and interleukin-23 (IL-23) positive cell counts between pterygium and normal conjunctiva.

    DESIGN: A case-control study.

    METHODS: This study received ethical approval (NMRR Research ID 23957) and informed consent was obtained from all participants. It involved 20 participants with 20 samples of pterygium and 20 samples of normal conjunctiva that were obtained from the same eye of each participant. All the participants underwent history taking, slit lamp examination, and pterygium excision surgery. Both samples underwent immunohistochemistry procedure. Pretreatment procedure was conducted using heat-induced epitope retrieval with PT link, subsequently followed by EnVision FLEX staining procedure and incubation with anti‒IL-17 antibody and anti‒IL-23 antibody. Slides were examined in high-power fields (400x) for both samples in 3 different fields. Total positive stained cell counts in all 3 fields with IL-17 and IL-23 between pterygium and normal conjunctiva were analyzed by using Wilcoxon signed rank test.

    RESULTS: IL-17 positive cell counts for normal conjunctiva showed mean 196.10 ± 80.487 but for pterygium was 331.10 ± 108.416. As for IL-23, the mean for positive cell counts for normal conjunctiva was 62.10 ± 33.462 and IL-23 positive cell counts for pterygium showed mean 102.95 ± 41.378. Both IL-17 and IL-23 were significantly increased in pterygium compared with normal conjunctiva (P < 0.001).

    CONCLUSIONS: Both IL-17 and IL-23 were found to be significantly higher in the pterygium group than in the normal conjunctiva group with P < 0.001 by Wilcoxon signed rank test.

    Matched MeSH terms: Interleukin-17/metabolism*
  4. Mitra NK, Bindal U, Eng Hwa W, Chua CL, Tan CY
    Int J Clin Exp Pathol, 2015;8(10):12041-52.
    PMID: 26722389
    Out of the minor myelin proteins, most significant one is myelin oligodendrocyte glycoprotein (MOG). Mesenchymal stem cells (MSCs) have proven immunoregulatory capacity. The objective of this study was to investigate the effects of syngeneic MSCs on mouse model of experimental autoimmune encephalomyelitis (EAE) through observation of locomotion by footprint analysis, histological analysis of spinal cord and estimation IL-17. C57BL/6 mice (10 weeks, n = 16) were immunized with 300 µg of MOG35-55 and 200 µL of complete Freund's adjuvant (CFA) to produce EAE model. Sham-treated control (n = 8) were injected with CFA. Half of immunized mice were given 100 µL of PBS (n = 8) and next half (n = 8) received 1 × 10(5) MSCs on day 11 through the tail veins. Clinical scoring showed development of EAE (loss of tonicity of tail and weakness of hind limb) on day 10. Following MSC treatment, clinical scores and hindlimb stride length showed significant improvement on day 15 onwards, compared to day 10 (P < 0.05). Under LFB staining, while PBS-treated group of EAE mice showed pale and degenerated axons in anterolateral white column of lumbar spinal cord, MSC-treated group showed numerous normal-looking axons. H&E staining showed normal axons in anterolateral white column and reduction of macrophages in MSC-treated EAE mice group. A lower level of IL-17 was observed in MSC treated EAE mice, compared to PBS-treated EAE mice. Our results suggest that Intravenous MSC has the potential to improve the locomotion and regeneration of axons in spinal cord in MOG-induced EAE model.
    Matched MeSH terms: Interleukin-17/metabolism
  5. Liu F, Wang S, Liu B, Wang Y, Tan W
    Cells, 2020 02 24;9(2).
    PMID: 32102363 DOI: 10.3390/cells9020511
    Psoriasis is a skin disease that is characterized by a high degree of inflammation caused by immune dysfunction. (R)-salbutamol is a bronchodilator for asthma and was reported to alleviate immune system reactions in several diseases. In this study, using imiquimod (IMQ)-induced mouse psoriasis-like dermatitis model, we evaluated the therapeutic effects of (R)-salbutamol in psoriasis in vivo, and explored the metabolic pathway involved. The results showed that, compared with IMQ group, (R)-salbutamol treatment significantly ameliorated psoriasis, reversed the suppressive effects of IMQ on differentiation, extreme keratinocyte proliferation, and infiltration of inflammatory cells. Enzyme-linked immunosorbent assays (ELISA) showed that (R)-salbutamol markedly reduced the plasma levels of IL-17. Cell analysis using flow cytometry showed that (R)-salbutamol decreased the proportion of CD4+ Th17+ T cells (Th17), whereas it increased the percentage of CD25+ Foxp3+ regulatory T cells (Tregs) in the spleens. (R)-salbutamol also decreased the weight ratio of spleen to body. Furthermore, untargeted metabolomics showed that (R)-salbutamol affected three metabolic pathways, including (i) arachidonic acid metabolism, (ii) sphingolipid metabolism, and (iii) glycerophospholipid metabolism. These results demonstrated that (R)-salbutamol can alleviate IMQ-induced psoriasis through regulating Th17/Tregs cell response and glycerophospholipid metabolism. It may provide a new use of (R)-salbutamol in the management of psoriasis.
    Matched MeSH terms: Interleukin-17/metabolism*
  6. Khan MS, Majid AM, Iqbal MA, Majid AS, Al-Mansoub M, Haque RS
    Eur J Pharm Sci, 2016 Oct 10;93:304-18.
    PMID: 27552907 DOI: 10.1016/j.ejps.2016.08.032
    Glioblastoma multiforme is a highly malignant, heterogenic, and drug resistant tumor. The blood-brain barrier (BBB), systemic cytotoxicity, and limited specificity are the main obstacles in designing brain tumor drugs. In this study a computational approach was used to design brain tumor drugs that could downregulate VEGF and IL17A in glioblastoma multiforme type four. Computational screening tools were used to evaluate potential candidates for antiangiogenic activity, target binding, BBB permeability, and ADME physicochemical properties. Additionally, in vitro cytotoxicity, migration, invasion, tube formation, apoptosis, ROS and ELISA assays were conducted for molecule 6 that was deemed most likely to succeed. The efflux ratio of membrane permeability and calculated docking scores of permeability to glycoproteins (P-gps) were used to determine the BBB permeability of the molecules. The results showed BBB permeation for molecule 6, with the predicted efficiency of 0.55kcal/mol and binding affinity of -37kj/mol corresponding to an experimental efflux ratio of 0.625 and predicted -15kj/mol of binding affinity for P-gps. Molecule 6 significantly affected the angiogenesis pathways by 2-fold downregulation of IL17A and VEGF through inactivation of active sites of HSP90 (predicted binding: -37kj/mol, predicted efficiency: 0.55kcal/mol) and p23 (predicted binding: 12kj/mol, predicted efficiency: 0.17kcal/mol) chaperon proteins. Additionally, molecule 6 activated the 17.38% relative fold of ROS level at 18.3μg/mL and upregulated the caspase which lead the potential synergistic apoptosis through the antiangiogenic activity of molecule 6 and thereby the highly efficacious anticancer upshot. The results indicate that the binding of the molecules to the therapeutic target is not essential to produce a lethal effect on cancer cells of the brain and that antiangiogenic efficiency is much more important.
    Matched MeSH terms: Interleukin-17/metabolism*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links