Displaying all 12 publications

Abstract:
Sort:
  1. Hii KU, Kwek KH
    Appl Opt, 2010 Feb 1;49(4):668-72.
    PMID: 20119017 DOI: 10.1364/AO.49.000668
    We present a wavefront reversal technique to produce a dual-field fringe pattern for self-referencing collimation testing in wedge-plate lateral-shear interferometry. The method requires only a suitably placed cubic beam splitter to produce two replicas of the fringe field formed by the wedge-plate lateral-shear interferometer. One of the replicas has a fringe pattern that is the reverse of the other. With these two fringe fields, the collimation testing has a built-in reference, and the detection sensitivity is twice that of a single-wedge-plate technique.
    Matched MeSH terms: Interferometry
  2. Hii KU, Kwek KH
    Appl Opt, 2009 Jan 10;48(2):397-400.
    PMID: 19137053
    An air-wedge lateral-shear interferometer using two prisms is presented. With a variable shear, the interferometer is suitable for testing collimation of a wide range of beam sizes down to a few millimeters in diameter. No antireflection coatings are necessary. Collimation for a light source with short coherent length is also demonstrated.
    Matched MeSH terms: Interferometry
  3. Pornsuwancharoen N, Youplao P, Amiri IS, Aziz MS, Tran QL, Ali J, et al.
    Microsc Res Tech, 2018 Aug;81(8):872-877.
    PMID: 29737596 DOI: 10.1002/jemt.23049
    A conventional Michelson interferometer is modified and used to form the various types of interferometers. The basic system consists of a conventional Michelson interferometer with silicon-graphene-gold embedded between layers on the ports. When light from the monochromatic source is input into the system via the input port (silicon waveguide), the change in optical path difference (OPD) of light traveling in the stacked layers introduces the change in the optical phase, which affects to the electron mean free path within the gold layer, induces the change in the overall electron mobility can be seen by the interferometer output visibility. Further plasmonic waves are introduced on the graphene thin film and the electron mobility occurred within the gold layer, in which the light-electron energy conversion in terms of the electron mobility can be observed, the gold layer length is 100 nm. The measurement resolution in terms of the OPD of

    50 nm is achieved. In applications, the outputs of the drop port device of the modified Michelson interferometer can be arranged by the different detectors, where the polarized light outputs, the photon outputs, the electron spin outputs can be obtained by the interference fringe visibility, mobility visibility and the spin up-down splitting output energies. The modified Michelson interferometer theory and the detection schemes are given in details.
    Matched MeSH terms: Interferometry
  4. Liu H, Yang H, Qiao X, Wang Y, Liu X, Lee YS, et al.
    Sensors (Basel), 2017 Jul 27;17(8).
    PMID: 28749437 DOI: 10.3390/s17081725
    We have experimentally demonstrated an optical fiber Mach-Zehnder interferometer (MZI) structure formed by a few-mode photonic crystal fiber (PCF) for curvature measurement and inscribed a fiber Bragg grating (FBG) in the PCF for the purpose of simultaneously measuring temperature. The structure consists of a PCF sandwiched between two multi-mode fibers (MMFs). Bending experimental results show that the proposed sensor has a sensitivity of -1.03 nm/m-1at a curvature range from 10 m-1to 22.4 m-1, and the curvature sensitivity of the embedded FBG was -0.003 nm/m-1. Temperature response experimental results showed that the MZI's wavelength, λa, has a sensitivity of 60.3 pm/°C, and the FBG's Bragg wavelength, λb, has sensitivity of 9.2 pm/°C in the temperature range of 8 to 100 °C. As such, it can be used for simultaneous measurement of curvature and temperature over ranges of 10 m-1to 22.4 m-1and 8 °C to 100 °C, respectively. The results show that the embedded FBG can be a good indicator to compensate the varying ambient temperature during a curvature measurement.
    Matched MeSH terms: Interferometry
  5. Kashif M, Bakar AA, Arsad N, Shaari S
    Sensors (Basel), 2014 Aug 28;14(9):15914-38.
    PMID: 25171117 DOI: 10.3390/s140915914
    Surface plasmon resonance (SPR) is a novel optical sensing technique with a unique ability to monitor molecular binding in real-time for biological and chemical sensor applications. Interferometry is an excellent tool for accurate measurement of SPR changes, the measurement and comparison is made for the sensitivity, dynamic range and resolution of the different analytes using interferometry techniques. SPR interferometry can also employ phase detection in addition to the amplitude of the reflected light wave, and the phase changes more rapidly compared with other approaches, i.e., intensity, angle and wavelength. Therefore, the SPR phase interferometer offers the advantages of spatial phase resolution and high sensitivity. This work discusses the advancements in interferometric SPR methods to measure the phase shifts due to refractive index changes. The main application areas of SPR sensors are demonstrated, i.e., the Fabry-Perot interferometer, Michelson interferometer and Mach-Zehnder interferometer, with different configurations. The three interferometers are discussed in detail, and solutions are suggested to enhance the performance parameters that will aid in future biological and chemical sensors.
    Matched MeSH terms: Interferometry/instrumentation*
  6. Islam MR, Ali MM, Lai MH, Lim KS, Ahmad H
    Sensors (Basel), 2014;14(4):7451-88.
    PMID: 24763250 DOI: 10.3390/s140407451
    Optical fibers have been involved in the area of sensing applications for more than four decades. Moreover, interferometric optical fiber sensors have attracted broad interest for their prospective applications in sensing temperature, refractive index, strain measurement, pressure, acoustic wave, vibration, magnetic field, and voltage. During this time, numerous types of interferometers have been developed such as Fabry-Perot, Michelson, Mach-Zehnder, Sagnac Fiber, and Common-path interferometers. Fabry-Perot interferometer (FPI) fiber-optic sensors have been extensively investigated for their exceedingly effective, simple fabrication as well as low cost aspects. In this study, a wide variety of FPI sensors are reviewed in terms of fabrication methods, principle of operation and their sensing applications. The chronology of the development of FPI sensors and their implementation in various applications are discussed.
    Matched MeSH terms: Interferometry
  7. Ooi P, Ching C, Ahmad M, Ng S, Abdullah M, Abu Hassan H, et al.
    Sains Malaysiana, 2014;43:617-621.
    Cupric oxide (CuO) thin films were prepared on a glass and silicon (Si) substrates by radio frequency magnetron sputtering system. The structural, optical and electrical properties of CuO films were characterized by X-ray diffraction (xRD), atomic force microscopy (AFM), Fourier transform infrared spectrometer, ultra-violet visible spectrophotometer, respectively, four point probe techniques and Keithley 4200 semiconductor characterization system. The xRD result showed that single phase CuO thin films with monoclinic structure were obtained. AFM showed well organized nano-pillar morphology with root mean square surface roughness for CuO thin films on glass and Si substrates were 3.64 and 1.91 nm, respectively. Infrared reflectance spectra shown a single reflection peak which is corresponding to CuO optical phonon mode and it confirmed that only existence of CuO composition on both substrates. The optical direct band gap energy of the CuO film grown on glass substrate, which is calculated from the optical transmission measurement was 1.37 eV. Finally, it was found that the deposited CuO films are resistive and the palladium formed ohmic contact for CuO on glass and schottky contact for CuO on Si.
    Matched MeSH terms: Interferometry
  8. Bakar AA, Lim YL, Wilson SJ, Fuentes M, Bertling K, Taimre T, et al.
    Physiol Meas, 2013 Feb;34(2):281-9.
    PMID: 23363933 DOI: 10.1088/0967-3334/34/2/281
    Optical sensing offers an attractive option for detection of surface biopotentials in human subjects where electromagnetically noisy environments exist or safety requirements dictate a high degree of galvanic isolation. Such circumstances may be found in modern magnetic resonance imaging systems for example. The low signal amplitude and high source impedance of typical biopotentials have made optical transduction an uncommon sensing approach. We propose a solution consisting of an electro-optic phase modulator as a transducer, coupled to a vertical-cavity surface-emitting laser and the self-mixing signal detected via a photodiode. This configuration is physically evaluated with respect to synthesized surface electrocardiographic (EKG) signals of varying amplitudes and using differing optical feedback regimes. Optically detected EKG signals using strong optical feedback show the feasibility of this approach and indicate directions for optimization of the electro-optic transducer for improved signal-to-noise ratios. This may provide a new means of biopotential detection suited for environments characterized by harsh electromagnetic interference.
    Matched MeSH terms: Interferometry/instrumentation*
  9. Citartan M, Gopinath SC, Tominaga J, Tang TH
    Analyst, 2013 Jul 7;138(13):3576-92.
    PMID: 23646346 DOI: 10.1039/c3an36828a
    Reporting biomolecular interactions has become part and parcel of many applications of science towards an in-depth understanding of disease and gene regulation. Apart from that, in diagnostic applications where biomolecules (antibodies and aptamers) are vastly applied, meticulous monitoring of biomolecular interaction is vital for clear-cut diagnosis. Several currently available methods of analyzing the interaction of the ligands with the appropriate analytes are aided by labeling using fluorescence or luminescence techniques. However, labeling is cumbersome and can occupy important binding sites of interactive molecules to be labeled, which may interfere with the conformational changes of the molecules and increase non-specificity. Optical-based sensing can provide an alternative way as a label-free procedure for monitoring biomolecular interactions. Optical sensors affiliated with different operating principles, including surface plasmon changes, scattering and interferometry, can impart a huge impact for in-house and point-of-care applications. This optical-based biosensing permits real-time monitoring, obviating the use of hazardous labeling molecules such as radioactive tags. Herein, label-free ways of reporting biomolecular interactions by various optical biosensors were gleaned.
    Matched MeSH terms: Interferometry
  10. Mohammadi A, Karimzadeh S, Jalal SJ, Kamran KV, Shahabi H, Homayouni S, et al.
    Sensors (Basel), 2020 Dec 16;20(24).
    PMID: 33339435 DOI: 10.3390/s20247214
    Digital elevation model (DEM) plays a vital role in hydrological modelling and environmental studies. Many essential layers can be extracted from this land surface information, including slope, aspect, rivers, and curvature. Therefore, DEM quality and accuracy will affect the extracted features and the whole process of modeling. Despite freely available DEMs from various sources, many researchers generate this information for their areas from various observations. Sentinal-1 synthetic aperture radar (SAR) images are among the best Earth observations for DEM generation thanks to their availabilities, high-resolution, and C-band sensitivity to surface structure. This paper presents a comparative study, from a hydrological point of view, on the quality and reliability of the DEMs generated from Sentinel-1 data and DEMs from other sources such as AIRSAR, ALOS-PALSAR, TanDEM-X, and SRTM. To this end, pair of Sentinel-1 data were acquired and processed using the SAR interferometry technique to produce a DEM for two different study areas of a part of the Cameron Highlands, Pahang, Malaysia, a part of Sanandaj, Iran. Based on the estimated linear regression and standard errors, generating DEM from Sentinel-1 did not yield promising results. The river streams for all DEMs were extracted using geospatial analysis tool in a geographic information system (GIS) environment. The results indicated that because of the higher spatial resolution (compared to SRTM and TanDEM-X), more stream orders were delineated from AIRSAR and Sentinel-1 DEMs. Due to the shorter perpendicular baseline, the phase decorrelation in the created DEM resulted in a lot of noise. At the same time, results from ground control points (GCPs) showed that the created DEM from Sentinel-1 is not promising. Therefore, other DEMs' performance, such as 90-meters' TanDEM-X and 30-meters' SRTM, are better than Sentinel-1 DEM (with a better spatial resolution).
    Matched MeSH terms: Interferometry
  11. Girei SH, Lim HN, Ahmad MZ, Mahdi MA, Md Zain AR, Yaacob MH
    Sensors (Basel), 2020 Aug 21;20(17).
    PMID: 32825539 DOI: 10.3390/s20174713
    The need for environmental protection and water pollution control has led to the development of different sensors for determining many kinds of pollutants in water. Ammonia nitrogen presence is an important indicator of water quality in environmental monitoring applications. In this paper, a high sensitivity sensor for monitoring ammonia nitrogen concentration in water using a tapered microfiber interferometer (MFI) as a sensor platform and a broad supercontinuum laser as the light source is realized. The MFI is fabricated to the waist diameter of 8 µm producing a strong interference pattern due to the coupling of the fundamental mode with the cladding mode. The MFI sensor is investigated for a low concentration of ammonia nitrogen in water in the wide wavelength range from 1500-1800 nm with a high-power signal provided by the supercontinuum source. The broad source allows optical sensing characteristics of the MFI to be evaluated at four different wavelengths (1505, 1605, 1705, and 1785 nm) upon exposure towards various ammonia nitrogen concentrations. The highest sensitivity of 0.099 nm/ppm that indicates the wavelength shift is observed at 1785 nm operating wavelength. The response is linear in the ammonia nitrogen range of 5-30 ppm with the best measurement resolution calculated to be 0.5 ppm. The low concentration ammonia nitrogen detected by the MFI in the unique infrared region reveals the potential application of this optical fiber-based sensor for rivers and drinking water monitoring.
    Matched MeSH terms: Interferometry
  12. Jasvinder S, Khang TF, Sarinder KK, Loo VP, Subrayan V
    Eye (Lond), 2011 Jun;25(6):717-24.
    PMID: 21394115 DOI: 10.1038/eye.2011.28
    To assess the agreement of the optical low-coherence reflectometry (OLCR) device LENSTAR LS900 with partial coherence interferometry (PCI) device IOLMaster and applanation and immersion ultrasound biometry.
    Matched MeSH terms: Interferometry/methods
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links