MATERIALS AND METHODS: Physico-chemical characteristics of hydrolysate were assessed according to FS 42-3874-99. Growth characteristics of nutrient medium based on soy hydrolysate and vaccine strains of influenza virus A/Solomon Islands/03/06 (H1N1), A/Wisconsin/67/2005 (H3N2) and B/Malaysia/2506/2004 were studied on MDCK and Vero cells.
RESULTS: MDCK and Vero cells grew well on medium based on soy hydrolysate obtained using bromeline with decreased (to 2% and 3% respectively) content of fetal calf serum and allowed effective production of vaccine strains of influenza virus.
CONCLUSION: Technology for producing of nutrient medium based on hydrolysate of soy flour obtained using bromeline was developed. This medium could successively used for cultivation of continued cell cultures MDCK and Vero used as substrate for tissue culture-based vaccines against influenza.
METHODOLOGY/PRINCIPAL FINDINGS: Participants were 131 healthy children aged 3-15 years. Participants were vaccinated with trivalent inactivated seasonal influenza vaccine (TIV) over the 2005-06, 2006-07 and 2007-8 seasons. Number of seasons vaccinated were categorized as one (2007-08); two (2007-08 and 2006-07 or 2007-08 and 2005-06) or three (2005-06, 2006-07, and 2007-08). Pre- and post-vaccination sera were collected four weeks apart. Antibody titres were determined by hemagglutination inhibition (HAI) assay using antigens to A/Solomon Islands/03/06 (H1N1), A/Wisconsin/67/05 (H3N2) and B/Malaysia/2506/04. The proportions sero-protected were compared by number of seasons vaccinated using cut-points for seroprotection of 1:40 vs. 1:320. The proportions of children sero-protected against H1N1 and H3N2 was high (>85%) regardless of number of seasons vaccinated and regardless of cut-point for seroprotection. For B Malaysia there was no change in proportions sero-protected by number of seasons vaccinated; however the proportions protected were lower than for H1N1 and H3N2, and there was a lower proportion sero-protected when the higher, compared to lower, cut-point was used for sero-protection.
CONCLUSION/SIGNIFICANCE: The proportion of children sero-protected is not affected by number of seasons vaccinated.
METHODS: In this study, EBNs that underwent different enzymatic preparation were tested against IAV infected cells. 50% cytotoxic concentration (CC50) and 50% inhibitory concentration (IC50) of the EBNs against IAV strain A/Puerto Rico/8/1934(H1N1) were determined by HA and MTT assays. Subsequently, the sialic acid content of the used EBNs were analyzed by fluorometric HPLC. Western Blotting and immunofluorescent staining were used to investigate the effects of EBNs on early endosomal trafficking and autophagy process of influenza virus.
RESULTS: This study showed that post inoculations of EBNs after enzymatic preparations have the highest efficacy to inhibit IAV. While CC50 of the tested EBNs ranged from 27.5-32 mg/ml, the IC50 of these compounds ranged between 2.5-4.9 mg/ml. EBNs could inhibit IAV as efficient as commercial antiviral agents, such as amantadine and oseltamivir with different mechanisms of action against IAV. The antiviral activity of these EBNs correlated with the content of N-acetyl neuraminic acid. EBNs could affect early endosomal trafficking of the virus by reducing Rab5 and RhoA GTPase proteins and also reoriented actin cytoskeleton of IAV infected cells. In addition, for the first time this study showed that EBNs can inhibit intracellular autophagy process of IAV life cycle as evidenced by reduction of LC3-II and increasing of lysosomal degradation.
CONCLUSIONS: The results procured in this study support the potential of EBNs as supplementary medication or alternative to antiviral agents to inhibit influenza infections. Evidently, EBNs can be a promising antiviral agent; however, these natural compounds should be screened for their metabolites prior to usage as therapeutic approach.