Displaying all 2 publications

Abstract:
Sort:
  1. Foo YY, Tiah A, Aung SW
    Clin Exp Immunol, 2023 Jun 05;212(3):212-223.
    PMID: 36866467 DOI: 10.1093/cei/uxad030
    Natural killer (NK) cells possess the innate ability to eliminate cancerous cells effectively. Their crucial role in immunosurveillance has been widely recognized and exploited for therapeutic intervention. Despite the fast-acting nature of NK cells, NK adoptive cell transfer lacks favorable response in some patients. Patient NK cells often display diminished phenotype in preventing cancer progression resulting in poor prognosis. Tumor microenvironment plays a significant role in causing the downfall of NK cells in patients. The release of inhibitory factors by tumor microenvironment hinders normal function of NK cells against tumor. To overcome this challenge, therapeutic strategies such as cytokine stimulation and genetic manipulation are being investigated to improve NK tumor-killing capacity. One of the promising approaches includes generation of more competent NK cells via ex vivo cytokines activation and proliferation. Cytokine-induced ML-NK demonstrated phenotypic alterations such as enhanced expression of activating receptors which help elevate their antitumor response. Previous preclinical studies showed enhanced cytotoxicity and IFNγ production in ML-NK cells compared to normal NK cells against malignant cells. Similar effects are shown in clinical studies in which MK-NK demonstrated encouraging results in treating hematological cancer. However, there is still a lack of in-depth studies using ML-NK in treating different types of tumors and cancers. With convincing preliminary response, this cell-based approach could be used to complement other therapeutic modalities to achieve better clinical outcomes.
    Matched MeSH terms: Immunotherapy, Adoptive/methods
  2. Ch'ng ACW, Chan SK, Ignatius J, Lim TS
    Eur J Immunol, 2019 08;49(8):1186-1199.
    PMID: 30919413 DOI: 10.1002/eji.201747328
    The application of human TCR in cancer immunotherapy has gained momentum with developments in tumor killing strategies using endogenous adaptive immune responses. The successful coverage of a diverse TCR repertoire is mainly attributed to the primer design of the human TCR V genes. Here, we present a refined primer design strategy of the human TCR V gene by clustering V gene sequence homolog for degenerate primer design based on the data from IMGT. The primers designed were analyzed and the PCR efficiency of each primer set was optimized. A total of 112 alpha and 160 beta sequences were aligned and clustered using a phylogram yielding 32 and 27 V gene primers for the alpha and beta family. The new primer set was able to provide 93.75% and 95.63% coverage for the alpha and beta family, respectively. A semi-qualitative approach using the designed primer set was able to provide a relative view of the TCR V gene diversity in different populations. Taken together, the new primers provide a more comprehensive coverage of the TCR gene diversity for improved TCR library generation and TCR V gene analysis studies.
    Matched MeSH terms: Immunotherapy, Adoptive/methods*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links