Displaying all 4 publications

Abstract:
Sort:
  1. Low CF, Shamsudin MN, Abdullah M, Chee HY, Aliyu-Paiko M
    J Fish Dis, 2015 Jan;38(1):17-25.
    PMID: 24397626 DOI: 10.1111/jfd.12195
    The mechanisms through which brown-marbled grouper accomplishes resistance to infection, particularly against Vibrios, are not yet fully understood. In this study, brown-marbled grouper fingerlings were experimentally infected with Vibrio parahaemolyticus, to identify disease resistance grouper, and the serum proteome profiles were compared between resistant and susceptible candidates, via two-dimensional gel electrophoresis (2-DE). The results showed that putative parvalbumin beta-2 subunit I, alpha-2-macroglobulin, nattectin and immunoglobulin light chain proteins were among proteins that significantly overexpressed in the resistant fish as compared to the susceptible group of fish, whereas apolipoprotein E and immunoglobulin light chain proteins were observed to be differentially overexpressed in the susceptible fish. Further analysis by peptide sequencing revealed that the immunoglobulin light chain proteins identified in the resistant and susceptible groups differed in amino acid composition. Taken together, the results demonstrated for the first time that putative parvalbumin beta-2 subunit I, alpha-2-macroglobulin, nattectin and immunoglobulin light chain are among important proteins participating to effect disease resistance mechanism in fish and were overexpressed to function collectively to resist V. parahaemolyticus infection. Most of these molecules are mediators of immune response.
    Matched MeSH terms: Immunoglobulin Light Chains/genetics
  2. Tan GH, Yusoff K, Seow HF, Tan WS
    J Clin Virol, 2007 Jan;38(1):49-56.
    PMID: 17074533
    Phage display is an alternative method for constructing and selecting antibodies with desired specificity towards an antigen.
    Matched MeSH terms: Immunoglobulin Light Chains/genetics*
  3. Nathan S, Li H, Mohamed R, Embi N
    J. Biochem. Mol. Biol. Biophys., 2002 Feb;6(1):45-53.
    PMID: 12186782
    We have used the phagemid pComb3H to construct recombinant phages displaying the single chain variable fragment (ScFv) towards exotoxin of Burkholderia pseudomallei. Variable heavy and light chain fragments were amplified from the hybridoma 6E6A8F3B line, with a wide spectrum of primers specific to mouse antibody genes. Through overlapping extension polymerase chain reaction, the heavy and light chain fragments were linked to form the ScFv which was subsequently cloned into the phage display vector and transformed into ER2537 cells to yield a complexity of 10(8) clones. The transformants were screened by four rounds of biopanning against the exotoxin and resulted in selective enrichment of exotoxin-binding antibodies by 301 fold. The phage pool from the final round of selection displayed antibodies of high-affinity to the exotoxin as demonstrated by ELISA. Several clones were selected randomly from this pool and analysed by restriction enzyme digestion, fingerprinting and sequencing. Restriction analysis confirmed that all clones carried a 700-800 bp insert whose sequences, in general, corresponded to that of mouse IgG. Fingerprinting profiles delineated the antibodies into two families with different CDR sequences.
    Matched MeSH terms: Immunoglobulin Light Chains/genetics
  4. Tohidi R, Idris IB, Panandam JM, Bejo MH
    Avian Pathol, 2012 Dec;41(6):605-12.
    PMID: 23237374 DOI: 10.1080/03079457.2012.739680
    Salmonella Enteritidis is a major cause of food poisoning worldwide, and poultry products are the main source of S. Enteritidis contamination for humans. Among the numerous strategies for disease control, improving genetic resistance to S. Enteritidis has been the most effective approach. We investigated the association between S. Enteritidis burden in the caecum, spleen, and liver of young indigenous chickens and seven candidate genes, selected on the basis of their critical roles in immunological functions. The genes included those encoding interleukin 2 (IL-2), interferon-γ (IFN-γ), transforming growth factor β2 (TGF-β2), immunoglobulin light chain (IgL), toll-like receptor 4 (TLR-4), myeloid differentiation protein 2 (MD-2), and inducible nitric oxide synthase (iNOS). Two Malaysian indigenous chicken breeds were used as sustainable genetic sources of alleles that are resistant to salmonellosis. The polymerase chain reaction restriction fragment-length polymorphism technique was used to genotype the candidate genes. Three different genotypes were observed in all of the candidate genes, except for MD-2. All of the candidate genes showed the Hardy-Weinberg equilibrium for the two populations. The IL-2-MnlI polymorphism was associated with S. Enteritidis burden in the caecum and spleen. The TGF-β2-RsaI, TLR-4-Sau 96I, and iNOS-AluI polymorphisms were associated with the caecum S. Enteritidis load. The other candidate genes were not associated with S. Enteritidis load in any organ. The results indicate that the IL-2, TGF-β2, TLR-4, and iNOS genes are potential candidates for use in selection programmes for increasing genetic resistance against S. Enteritidis in Malaysian indigenous chickens.
    Matched MeSH terms: Immunoglobulin Light Chains/genetics
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links