Displaying all 3 publications

Abstract:
Sort:
  1. Reginald K, Tan CL, Chen S, Yuen L, Goh SY, Chew FT
    Sci Rep, 2018 08 06;8(1):11743.
    PMID: 30082894 DOI: 10.1038/s41598-018-30224-z
    We previously identified an expressed sequence tag clone, Der f 22, showing 41% amino acid identity to published Der f 2, and show that both genes are possible paralogues. The objective of this study was to characterize the genomic, proteomic and immunological functions Der f 22 and Der f 2. The full-length sequence of Der f 2 and Der f 22 coded for mature proteins of 129 and 135 amino acids respectively, both containing 6 cysteine residues. Phylogenetic analysis of known group 2 allergens and their homologues from our expressed sequence tag library showed that Der f 22 is a paralogue of Der f 2. Both Der f 2 and Der f 22 were single gene products with one intron. Both allergens showed specific IgE-binding to over 40% of the atopic patients, with limited of cross-reactivity. Both allergens were detected at the gut region of D. farinae by immunostaining. Der f 22 is an important allergen with significant IgE reactivity among the atopic population, and should be considered in the diagnostic panel and evaluated as future hypoallergen vaccine therapeutic target.
    Matched MeSH terms: Immunoglobulin E/chemistry
  2. Arif SA, Hamilton RG, Yusof F, Chew NP, Loke YH, Nimkar S, et al.
    J Biol Chem, 2004 Jun 04;279(23):23933-41.
    PMID: 15024009
    Recurring reports of a highly allergenic 42-46-kDa protein in Hevea brasiliensis latex appeared to have been resolved with the discovery of a 43-kDa allergenic latex protein that was a homologue to patatin. However, the low to moderate prevalence of sensitization to the protein, designated Hev b 7, among latex-allergic patients could not adequately explain the frequent observations of the 42-46-kDa allergen. This led to the hypothesis that another, more allergenic protein of a similar molecular mass existed in Hevea latex. We report the isolation and purification of a 42.98-kDa latex glycoprotein showing homology to the early nodule-specific protein (ENSP) of the legumes Medicago sativa, Medicago truncatula, and Glycine max. The protein is allergenic, being recognized by immunoglobulin E (IgE) in sera from latex-allergic patients. The IgE epitope resides on the carbohydrate moiety of the protein, and the presence of a similar carbohydrate component on potato tuber patatin enables the latter to inhibit IgE binding to the ENSP homologue. The cDNA encoding the ENSP homologue was isolated by reverse transcription-PCR and cloned. The protein predicted from the cDNA sequence has 391 amino acids, the first 26 of which constitute a putative signal peptide. The deduced molecular mass of the mature protein is 40.40 kDa, while its isoelectric point is estimated at 5.0. The discrepancy between the predicted and observed molecular mass might be due to glycosylation, for which three N-sites on the protein are predicted. The purified protein showed lipase and esterase activities and may be involved in plant defense.
    Matched MeSH terms: Immunoglobulin E/chemistry
  3. Chan SL, Ong TC, Gao YF, Tiong YS, Wang de Y, Chew FT, et al.
    J Immunol, 2008 Aug 15;181(4):2586-96.
    PMID: 18684949
    A high incidence of sensitization to Blomia tropicalis, the predominant house dust mite species in tropical regions, is strongly associated with allergic diseases in Singapore, Malaysia, and Brazil. IgE binding to the group 5 allergen, Blo t 5, is found to be the most prevalent among all B. tropicalis allergens. The NMR structure of Blo t 5 determined represents a novel helical bundle structure consisting of three antiparallel alpha-helices. Based on the structure and sequence alignment with other known group 5 dust mite allergens, surface-exposed charged residues have been identified for site-directed mutagenesis and IgE binding assays. Four charged residues, Glu76, Asp81, Glu86, and Glu91 at around the turn region connecting helices alpha2 and alpha3 have been identified to be involved in the IgE binding. Using overlapping peptides, we have confirmed that these charged residues are located on a major putative linear IgE epitope of Blo t 5 from residues 76-91 comprising the sequence ELKRTDLNILERFNYE. Triple and quadruple mutants have been generated and found to exhibit significantly lower IgE binding and reduced responses in skin prick tests. The mutants induced similar PBMC proliferation as the wild-type protein but with reduced Th2:Th1 cytokines ratio. Mass screening on a quadruple mutant showed a 40% reduction in IgE binding in 35 of 42 sera of atopic individuals. Findings in this study further stressed the importance of surface-charged residues on IgE binding and have implications in the cross-reactivity and use of Blo t 5 mutants as a hypoallergen for immunotherapy.
    Matched MeSH terms: Immunoglobulin E/chemistry*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links