Displaying publications 1 - 20 of 26 in total

Abstract:
Sort:
  1. Krishna SS, Farhana SA, T P A, Hussain SM, Viswanad V, Nasr MH, et al.
    Front Immunol, 2023;14:1229667.
    PMID: 37744376 DOI: 10.3389/fimmu.2023.1229667
    The increasing prevalence of food allergies worldwide and the subsequent life-threatening anaphylactic reactions often have sparse treatment options, providing only symptomatic relief. Great strides have been made in research and in clinics in recent years to offer novel therapies for the treatment of allergic disorders. However, current allergen immunotherapy has its own shortcomings in terms of long-term efficacy and safety, due to the local side effects and the possibility of anaphylaxis. Allergen-specific immunotherapy is an established therapy in treating allergic asthma, allergic rhinitis, and allergic conjunctivitis. It acts through the downregulation of T cell, and IgE-mediated reactions, as well as desensitization, a process of food tolerance without any allergic events. This would result in a protective reaction that lasts for approximately 3 years, even after the withdrawal of therapy. Furthermore, allergen-specific immunotherapy also exploits several routes such as oral, sublingual, and epicutaneous immunotherapy. As the safety and efficacy of allergen immunotherapy are still under research, the exploration of newer routes such as intra-lymphatic immunotherapy would address unfulfilled needs. In addition, the existence of nanoparticles can be exploited immensely in allergen immunotherapy, which would lead to safer and efficacious therapy. This manuscript highlights a novel drug delivery method for allergen-specific immunotherapy that involves the administration of specific allergens to the patients in gradual increasing doses, to induce desensitization and tolerance, as well as emphasizing different routes of administration, mechanism, and the application of nanoparticles in allergen-specific immunotherapy.
    Matched MeSH terms: Immune Tolerance
  2. Shankar EM, Vignesh R, Dash AP
    Med Microbiol Immunol, 2018 Aug;207(3-4):167-174.
    PMID: 29936565 DOI: 10.1007/s00430-018-0547-0
    T-cell exhaustion reportedly leads to dysfunctional immune responses of antigen-specific T cells. Investigations have revealed that T cells expand into functionally defective phenotypes with poor recall/memory abilities to parasitic antigens. The exploitation of co-inhibitory pathways represent a highly viable area of translational research that has very well been utilized against certain cancerous conditions. Malaria, at times, evolve into a sustained chronic state where T cells express several co-inhibitory molecules (negative immune checkpoints) facilitating parasite escape and sub-optimal protective responses. Experimental evidence suggests that blockade of co-inhibitory molecules on T cells in malaria could result in the sustenance of protective responses together with dramatic parasite clearance. The role of several co-inhibitory molecules in malaria infection largely remain unclear, and here we discussed the potential applicability of co-inhibitory molecules in the management of malaria with a view to harness protective host responses against chronic disease and associated consequences.
    Matched MeSH terms: Immune Tolerance*
  3. Pan SY, Chia YC, Yee HR, Fang Cheng AY, Anjum CE, Kenisi Y, et al.
    Future Sci OA, 2020 Oct 29;7(2):FSO648.
    PMID: 33437514 DOI: 10.2144/fsoa-2020-0142
    The immune system is a complex network of specialized cells and organs that recognises and reacts against foreign pathogens while remaining unresponsive to host tissues. This ability to self-tolerate is known as immunological tolerance. Autoimmune disease occurs when the immune system fails to differentiate between self and non-self antigens and releases autoantibodies to attack our own cells. Anti-idiotypic (anti-ID) antibodies are important in maintaining a balanced idiotypic regulatory network by neutralising and inhibiting the secretion of autoantibodies. Recently, anti-ID antibodies have been advanced as an alternative form of immunotherapy as they can specifically target autoantibodies, cause less toxicity and side effects, and could provide long-lasting immunity. This review article discusses the immunomodulatory potential of anti-ID antibodies for the treatment of autoimmune diseases.
    Matched MeSH terms: Immune Tolerance
  4. Sosroseno W, Herminajeng E, Bird P
    Biomed Pharmacother, 2015 Mar;70:294-8.
    PMID: 25776514 DOI: 10.1016/j.biopha.2014.12.039
    The aim of the present study was to determine the effect of immune status, age and genetic background on the induction of oral tolerance to Actinomyces viscosus. Suppression of delayed type hypersensitivity (DTH) response and antigen-specific serum antibody levels could be induced in DBA/2 mice intragastrically and systemically immunized with A. viscocus, suggesting the induction of oral tolerance. In contrast, this immune suppression could be abrogated if the animals had been systemically immunized prior to the induction of oral tolerance with the same bacterium. Long-term systemic immunization prior to intragastric immunization with A. viscocus suppressed DTH response only. Cell transfer of this group of animals also suppressed DTH response in the donors, indicating the action of suppressor cells for inhibition of DTH response. Furthermore, oral tolerance to A. viscocus failed to occur in mice aged at 3 days and 1, 2, 4, 6 and 36 weeks old. Mice bearing H-2(d) haplotype were the most susceptible to oral tolerization, followed by H-2(b) and H-2(k). Therefore, the results of the presence study suggest that the induction of oral tolerance to A. viscosus in mice may be dependence on the immune status and genetic background but not age.
    Matched MeSH terms: Immune Tolerance/genetics*; Immune Tolerance/immunology*
  5. Radhakrishnan, Ammu Kutty
    MyJurnal
    The immune system is the host natural defence against cancer. Cancers are caused by progressive growth of the progeny of a single transformed host cell. The immune system is generally not able to mount immune responses to “self-antigens”, due to various mechanisms of immunological tolerance that are in place. This means that despite possessing a natural defence against tumours, many of the cancer patients may not be able
    to mount an effective immune response to fight the tumours. Dendritic cells (DC) are highly specialised in antigen presenting that can initiate and stimulate immune responses. These cells have the ability to stimulate naïve T cell proliferation and perform specific stimulatory and tolerogenic functions respectively. When the DC are activated by antigens, these cells
    undergoes further maturation and migrate to secondary lymphoid tissues, present antigen to T cells and finally induce an immune response. The ability of the DC to activate naïve and primed T-lymphocytes makes these cells a good candidate to be explored as a potential immunotherapeutic agent that can modulate antitumour immune responses in the affected host.
    Matched MeSH terms: Immune Tolerance
  6. Bogomiakova ME, Sekretova EK, Anufrieva KS, Khabarova PO, Kazakova AN, Bobrovsky PA, et al.
    Stem Cell Res Ther, 2023 Apr 11;14(1):77.
    PMID: 37038186 DOI: 10.1186/s13287-023-03308-5
    BACKGROUND: Dozens of transplants generated from pluripotent stem cells are currently in clinical trials. The creation of patient-specific iPSCs makes personalized therapy possible due to their main advantage of immunotolerance. However, some reports have claimed recently that aberrant gene expression followed by proteome alterations and neoantigen formation can result in iPSCs recognition by autologous T-cells. Meanwhile, the possibility of NK-cell activation has not been previously considered. This study focused on the comparison of autologous and allogeneic immune response to iPSC-derived cells and isogeneic parental somatic cells used for reprogramming.

    METHODS: We established an isogeneic cell model consisting of parental dermal fibroblasts, fibroblast-like iPSC-derivatives (iPS-fibro) and iPS-fibro lacking beta-2-microglobulin (B2M). Using the cells obtained from two patients, we analyzed the activation of autologous and allogeneic T-lymphocytes and NK-cells co-cultured with target cells.

    RESULTS: Here we report that cells differentiated from iPSCs can be recognized by NK-cells rather than by autologous T-cells. We observed that iPS-fibro elicited a high level of NK-cell degranulation and cytotoxicity, while isogeneic parental skin fibroblasts used to obtain iPSCs barely triggered an NK-cell response. iPSC-derivatives with B2M knockout did not cause an additional increase in NK-cell activation, although they were devoid of HLA-I, the major inhibitory molecules for NK-cells. Transcriptome analysis revealed a significant imbalance of ligands for activating and inhibitory NK-cell receptors in iPS-fibro. Compared to parental fibroblasts, iPSC-derivatives had a reduced expression of HLA-I simultaneously with an increased gene expression of major activating ligands, such as MICA, NECTIN2, and PVR. The lack of inhibitory signals might be due to insufficient maturity of cells differentiated from iPSCs. In addition, we showed that pretreatment of iPS-fibro with proinflammatory cytokine IFNγ restored the ligand imbalance, thereby reducing the degranulation and cytotoxicity of NK-cells.

    CONCLUSION: In summary, we showed that iPSC-derived cells can be sensitive to the cytotoxic potential of autologous NK-cells regardless of HLA-I status. Thus, the balance of ligands for NK-cell receptors should be considered prior to iPSC-based cell therapies. Trial registration Not applicable.

    Matched MeSH terms: Immune Tolerance
  7. Sosroseno W, Bird PS, Gemmell E, Seymour GJ
    Oral Dis, 2006 Jul;12(4):387-94.
    PMID: 16792724
    To determine whether oral tolerance with the oral bacterium Actinomyces viscosus was inducible in mice.
    Matched MeSH terms: Immune Tolerance*
  8. Fazalul Rahiman SS, Basir R, Talib H, Tie TH, Chuah YK, Jabbarzare M, et al.
    Trop Biomed, 2013 Dec;30(4):663-80.
    PMID: 24522137 MyJurnal
    Interleukin-27 (IL-27) has a pleiotropic role either as a pro-inflammatory or anti-inflammatory cytokine in inflammatory related diseases. The role and involvement of IL-27 during malaria was investigated and the effects of modulating its release on the production of major inflammatory cytokines and the histopathological consequences in major affected organs during the infection were evaluated. Results showed that IL-27 concentration was significantly elevated throughout the infection but no positive correlation with the parasitaemia development observed. Augmentation of IL-27 significantly elevated the release of anti-inflammatory cytokine, IL-10 whereas antagonising and neutralising IL-27 produced the opposite. A significant elevation of pro-inflammatory cytokines (IFN-γ and IL-6) was also observed, both during augmentation and inhibition of IL-27. Thus, it is suggested that IL-27 exerts an anti-inflammatory activity in the Th1 type response by signalling the production of IL-10 during malaria. Histopathological examination showed sequestration of PRBC in the microvasculature of major organs in malarial mice. Other significant histopathological changes include hyperplasia and hypertrophy of the Kupffer cells in the liver, hyaline membrane formation in lung tissue, enlargement of the white and red pulp followed by the disappearance of germinal centre of the spleen, and tubular vacuolation of the kidney tissues. In conclusion, it is suggested that IL-27 may possibly acts as an anti-inflammatory cytokine during the infection. Modulation of its release produced a positive impact on inflammatory cytokine production during the infection, suggesting its potential in malaria immunotherapy, in which the host may benefit from its inhibition.
    Matched MeSH terms: Immune Tolerance*
  9. Azid NA, Ahmad S, Boer JC, Al-Hatamleh MAI, Mohammad N, Mohd Ashari NS, et al.
    Hum Immunol, 2020 08 06;81(10-11):634-643.
    PMID: 32771274 DOI: 10.1016/j.humimm.2020.07.006
    The interaction of tolerogenic CD103+ dendritic cells (DCs) with regulatory T (Tregs) cells modulates immune responses by inducing immune tolerance. Hence, we determined the proportion of these cells in the peripheral blood mononuclear cells (PBMC) of asthmatic patients. We observed lower trends of CD11b-CD103+ DCs and CD86 within CD11b-CD103+ DCs, while increased levels of Foxp3 expressing CD25+/-TNFR2+ cells in asthmatics. There was a positive correlation in the expression of Foxp3 within CD3+CD4+CD25+TNFR2+ Tregs and CD11b-CD103+ as well as the expression of CD86 within HLA-DR+CD11c+CD11b-CD103+ DCs. In conclusion, we suggest that the increased levels of Tregs in blood could continuously suppress the T helper 2 (Th2) cells activation in the circulation which is also supported by the increase of anti-inflammatory cytokines IL-10 and TNF. Overall, functional immunoregulation of the regulatory cells, particularly Tregs, exhibit immune suppression and induce immune tolerance linked with the immune activation by the antigen presenting cells (APC).
    Matched MeSH terms: Immune Tolerance
  10. Islam MA, Kamal MA, Md Zulfiker AH, Gan SH
    Curr Pharm Des, 2019;25(27):2907-2908.
    PMID: 31621552 DOI: 10.2174/138161282527191007151037
    Matched MeSH terms: Immune Tolerance
  11. Irekeola AA, E A R ENS, Lazim NM, Mohamud R, Yean CY, Shueb RH
    Cells, 2020 02 20;9(2).
    PMID: 32093265 DOI: 10.3390/cells9020487
    Regulatory T cells (Tregs) are renowned for maintaining homeostasis and self-tolerance through their ability to suppress immune responses. For over two decades, Tregs have been the subject of intensive research. The immunosuppressive and migratory potentials of Tregs have been exploited, especially in the areas of cancer, autoimmunity and vaccine development, and many assay protocols have since been developed. However, variations in assay conditions in different studies, as well as covert experimental factors, pose a great challenge to the reproducibility of results. Here, we focus on human Tregs derived from clinical samples and highlighted caveats that should be heeded when conducting Tregs suppression and migration assays. We particularly delineated how factors such as sample processing, choice of reagents and equipment, optimization and other experimental conditions could introduce bias into the assay, and we subsequently proffer recommendations to enhance reliability and reproducibility of results. It is hoped that prioritizing these factors will reduce the tendencies of generating false and misleading results, and thus, help improve our understanding and interpretation of Tregs functional studies.
    Matched MeSH terms: Immune Tolerance
  12. Ong HK, Tan WS, Ho KL
    PeerJ, 2017;5:e4053.
    PMID: 29158984 DOI: 10.7717/peerj.4053
    Cancers have killed millions of people in human history and are still posing a serious health problem worldwide. Therefore, there is an urgent need for developing preventive and therapeutic cancer vaccines. Among various cancer vaccine development platforms, virus-like particles (VLPs) offer several advantages. VLPs are multimeric nanostructures with morphology resembling that of native viruses and are mainly composed of surface structural proteins of viruses but are devoid of viral genetic materials rendering them neither infective nor replicative. In addition, they can be engineered to display multiple, highly ordered heterologous epitopes or peptides in order to optimize the antigenicity and immunogenicity of the displayed entities. Like native viruses, specific epitopes displayed on VLPs can be taken up, processed, and presented by antigen-presenting cells to elicit potent specific humoral and cell-mediated immune responses. Several studies also indicated that VLPs could overcome the immunosuppressive state of the tumor microenvironment and break self-tolerance to elicit strong cytotoxic lymphocyte activity, which is crucial for both virus clearance and destruction of cancerous cells. Collectively, these unique characteristics of VLPs make them optimal cancer vaccine candidates. This review discusses current progress in the development of VLP-based cancer vaccines and some potential drawbacks of VLPs in cancer vaccine development. Extracellular vesicles with close resembling to viral particles are also discussed and compared with VLPs as a platform in cancer vaccine developments.
    Matched MeSH terms: Immune Tolerance
  13. Gnanaraj C, Shah MD, Haque AT, Makki JS, Iqbal M
    PMID: 27279582 DOI: 10.1615/JEnvironPatholToxicolOncol.2016013802
    Synedrella nodiflora is a medicinal plant that is used by the natives of Sabah, Malaysia to treat rheumatism and several other ailments. This study aims to evaluate the ability of the crude aqueous extract of S. nodiflora leaves to protect against carbon tetrachloride (CCl4)-mediated hepatic injury in rats. S. nodiflora aqueous extract was orally administered to adult Sprague Dawley rats once daily for 14 days (150 and 300 mg/kg body weight [b.w.]) before CCl4 oral treatment (1.0 mL/kg b.w.) on the 13th and 14th days. Serum alanine aminotransferase (ALT), serum aspartate aminotransferase (AST), hepatic antioxidant enzymes, and malondialdehyde (MDA) levels were estimated. Immunohistochemistry was performed for oxidative stress markers (4-hydroxynonenal [HNE], 8-hydroxy-deoxyguanosine [8-OHdG]) and proinflammatory markers (tumor necrosis factor-α, interleukin-6, prostaglandin E2). Biochemical, immunohistochemical, histological, and ultrastructural findings were in agreement to support the hepatoprotective effect of S. nodiflora against CCl4-mediated oxidative hepatic damage. Hepatoprotective effects of S. nodiflora might be attributable to the presence of phenolic antioxidants and their free radical scavenging property.
    Matched MeSH terms: Immune Tolerance/drug effects*
  14. Sosroseno W, Bird PS, Gemmell E, Seymour GJ
    Oral Microbiol. Immunol., 2006 Jun;21(3):151-8.
    PMID: 16626371
    Mucosal presentation of Actinomyces viscosus results in the induction of antigen specific systemic suppressor cells in mice. The aim of the present study was to determine the phenotype of the suppressor cells responsible for the induction of oral tolerance to low doses of A. viscosus. When CD8 cell-depleted DBA/2 mice were intragastrically immunized and systemically immunized with A. viscosus, the delayed type hypersensitivity response was suppressed but not the levels of antigen specific serum antibodies. Adoptive transfer of orally tolerized CD4(+) cells to CD4(+)-depleted mice resulted in suppression of delayed type hypersensitivity response but not of the levels of antigen specific serum antibodies. In contrast, adoptive transfer of orally immunized CD8(+) cells to CD8(+)-depleted mice resulted in partially suppressed delayed type hypersensitivity response but significantly inhibited the levels of antigen specific serum antibodies. When orally tolerized CD8(+) cells were cocultured with systemically immunized CD8(+) cell-depleted spleen cells, splenic specific antibodies were inhibited. However, no suppression of splenic specific antibodies could be observed in the cultures containing orally tolerized CD4(+) cells and systemically immunized CD4(+) cell-depleted spleen cells. The results of the present study suggest that oral tolerance of humoral and cellular immunity induced by low doses of A. viscosus may be mediated by CD8(+) and CD4(+) cells, respectively.
    Matched MeSH terms: Immune Tolerance/immunology*
  15. Sukri A, Hanafiah A, Kosai NR, Mohamed Taher M, Mohamed Rose I
    Helicobacter, 2016 Oct;21(5):417-27.
    PMID: 26807555 DOI: 10.1111/hel.12295
    Comprehensive immunophenotyping cluster of differentiation (CD) antigens in gastric adenocarcinoma, specifically between Helicobacter pylori-infected and -uninfected gastric cancer patients by using DotScan(™) antibody microarray has not been conducted. Current immunophenotyping techniques include flow cytometry and immunohistochemistry are limited to the use of few antibodies for parallel examination. We used DotScan(™) antibody microarray consisting 144 CD antibodies to determine the distribution of CD antigens in gastric adenocarcinoma cells and to elucidate the effect of H. pylori infection toward CD antigen expression in gastric cancer.
    Matched MeSH terms: Immune Tolerance
  16. Kong NC, Shaariah W, Morad Z, Suleiman AB, Wong YH
    Aust N Z J Med, 1990 Oct;20(5):645-9.
    PMID: 2285381
    Cryptococcosis is a known opportunistic infection in immunosuppressed hosts. We report our experience of all cases presenting to our Department between December 1975 and September 1988. Eight post-renal transplant patients and three systemic lupus erythematosus (SLE) patients were affected. All were receiving treatment with steroids, in association with either azathioprine or cyclosporin. The diagnosis of cryptococcal meningitis was initially based on a positive cerebrospinal fluid (CSF) cryptococcal antigen, by latex agglutination test, and subsequently confirmed by cultures. Common clinical presentations, in descending order of frequency, included headaches, fever, mental confusion, epilepsy and papilloedema. Meningism was not a prominent feature. CT brain scans were obtained in eight patients and one showed a focal lesion and one showed cerebral atrophy. Four patients also had an abnormal chest X-ray (CXR) and one had disseminated cryptococcosis. Amphotericin and 5-fluorocytosine were the mainstay of therapy, although ketoconazole alone was subsequently used in three selected patients with cure. Four early deaths occurred in patients with delayed diagnosis and treatment, usually in association with other severe concurrent infections. We conclude that awareness of cryptococcosis is essential in immunocompromised hosts presenting with headache with, or without, mental confusion or fever.
    Matched MeSH terms: Immune Tolerance
  17. Chia WK, Cheah FC, Abdul Aziz NH, Kampan NC, Shuib S, Khong TY, et al.
    Front Pediatr, 2021;9:615508.
    PMID: 33791258 DOI: 10.3389/fped.2021.615508
    Bronchopulmonary dysplasia (BPD) is a devastating lung disorder of preterm infants as a result of an aberrant reparative response following exposures to various antenatal and postnatal insults. Despite sophisticated medical treatment in this modern era, the incidence of BPD remains unabated. The current strategies to prevent and treat BPD have met with limited success. The emergence of stem cell therapy may be a potential breakthrough in mitigating this complex chronic lung disorder. Over the last two decades, the human placenta and umbilical cord have gained increasing attention as a highly potential source of stem cells. Placenta-derived stem cells (PDSCs) and umbilical cord-derived stem cells (UCDSCs) display several advantages such as immune tolerance and are generally devoid of ethical constraints, in addition to their stemness qualities. They possess the characteristics of both embryonic and mesenchymal stromal/stem cells. Recently, there are many preclinical studies investigating the use of these cells as therapeutic agents in neonatal disease models for clinical applications. In this review, we describe the preclinical and clinical studies using PDSCs and UCDSCs as treatment in animal models of BPD. The source of these stem cells, routes of administration, and effects on immunomodulation, inflammation and regeneration in the injured lung are also discussed. Lastly, a brief description summarized the completed and ongoing clinical trials using PDSCs and UCDSCs as therapeutic agents in preventing or treating BPD. Due to the complexity of BPD, the development of a safe and efficient therapeutic agent remains a major challenge to both clinicians and researchers.
    Matched MeSH terms: Immune Tolerance
  18. Dutta S, Sengupta P, Haque N
    Int Rev Immunol, 2020;39(2):53-66.
    PMID: 31608717 DOI: 10.1080/08830185.2019.1674299
    Pregnancy, a challenging physiological state, requires shuffling of conventional immune work-sets. Strategies to tolerate the semi-allogenic fetus in normal human pregnancy are multivariate with perfect modulation of the immune cells. Pregnancy is marked by B cell lymphocytopenia accompanied by reduced responsiveness to infectious agents. Besides this old age concept, plenty of research confirms that B cells have other crucial roles in pregnancy and undergo a wide range of modifications in terms of its proliferation, switching between its subtypes, variation in antibody productions, shifting the tides of cytokines as well as regulating other immune cells. B cells establish tolerant environment in pregnancy by producing protective antibodies to encounter the foreign paternal antigens. Regulatory B cells (Bregs) have adopted anti-inflammatory characteristics to sustain normal pregnancy. Moreover, the colossal physiological alterations during human pregnancy also include synchronized changes in the cross-talks between the pregnancy hormones and B cells. These aspects of pregnancy from the view point of B cell functions have so far appeared individually in discrete reports. This review finds its novelty in concisely presenting every facet of association of B cell with human pregnancy.
    Matched MeSH terms: Immune Tolerance
  19. Ahmad S, Al-Hatamleh MAI, Mohamud R
    Cell Immunol, 2021 10;368:104412.
    PMID: 34340162 DOI: 10.1016/j.cellimm.2021.104412
    Autoimmunity is the assault of immune response towards self-antigens, resulting to inflammation and tissue injury. It is staged into three phases and caused by malfunction of immune tolerance. In our body, immune tolerance is synchronized by several immunosuppressor cells such as regulatory T cells and B cells as well as myeloid-derived suppressor cells, which are prominently dysregulated in autoimmunity. Hence, targeting these cell populations serve as a significant potential in the therapy of autoimmunity. Nanotechnology with its advantageous properties is shown to be a remarkable tool as drug delivery system in this field. This review focused on the development of therapeutics in autoimmune diseases utilizing various nanoparticles formulation based on two targeting approaches in autoimmunity, passive and active targeting. Lastly, this review outlined the approved present nanomedicines as well as in clinical evaluations and issues regarding the lack of translation of these nanomedicines into the market, despite the abundant of positive experimental observations.
    Matched MeSH terms: Immune Tolerance
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links