Displaying publications 1 - 20 of 49 in total

Abstract:
Sort:
  1. Gandhamal A, Talbar S, Gajre S, Razak R, Hani AFM, Kumar D
    Comput Biol Med, 2017 Sep 01;88:110-125.
    PMID: 28711767 DOI: 10.1016/j.compbiomed.2017.07.008
    Knee osteoarthritis (OA) progression can be monitored by measuring changes in the subchondral bone structure such as area and shape from MR images as an imaging biomarker. However, measurements of these minute changes are highly dependent on the accurate segmentation of bone tissue from MR images and it is challenging task due to the complex tissue structure and inadequate image contrast/brightness. In this paper, a fully automated method for segmenting subchondral bone from knee MR images is proposed. Here, the contrast of knee MR images is enhanced using a gray-level S-curve transformation followed by automatic seed point detection using a three-dimensional multi-edge overlapping technique. Successively, bone regions are initially extracted using distance-regularized level-set evolution followed by identification and correction of leakages along the bone boundary regions using a boundary displacement technique. The performance of the developed technique is evaluated against ground truths by measuring sensitivity, specificity, dice similarity coefficient (DSC), average surface distance (AvgD) and root mean square surface distance (RMSD). An average sensitivity (91.14%), specificity (99.12%) and DSC (90.28%) with 95% confidence interval (CI) in the range 89.74-92.54%, 98.93-99.31% and 88.68-91.88% respectively is achieved for the femur bone segmentation in 8 datasets. For tibia bone, average sensitivity (90.69%), specificity (99.65%) and DSC (91.35%) with 95% CI in the range 88.59-92.79%, 99.50-99.80% and 88.68-91.88% respectively is achieved. AvgD and RMSD values for femur are 1.43 ± 0.23 (mm) and 2.10 ± 0.35 (mm) respectively while for tibia, the values are 0.95 ± 0.28 (mm) and 1.30 ± 0.42 (mm) respectively that demonstrates acceptable error between proposed method and ground truths. In conclusion, results obtained in this work demonstrate substantially significant performance with consistency and robustness that led the proposed method to be applicable for large scale and longitudinal knee OA studies in clinical settings.
    Matched MeSH terms: Imaging, Three-Dimensional/methods*
  2. Bakhshipour Z, Huat BB, Ibrahim S, Asadi A, Kura NU
    ScientificWorldJournal, 2013;2013:629476.
    PMID: 24501583 DOI: 10.1155/2013/629476
    This work describes the application of the electrical resistivity (ER) method to delineating subsurface structures and cavities in Kuala Lumpur Limestone within the Batu Cave area of Selangor Darul Ehsan, Malaysia. In all, 17 ER profiles were measured by using a Wenner electrode configuration with 2 m spacing. The field survey was accompanied by laboratory work, which involves taking resistivity measurements of rock, soil, and water samples taken from the field to obtain the formation factor. The relationship between resistivity and the formation factor and porosity for all the samples was established. The porosity values were plotted and contoured. A 2-dimensional and 3-dimensional representation of the subsurface topography of the area was prepared through use of commercial computer software. The results show the presence of cavities and sinkholes in some parts of the study area. This work could help engineers and environmental managers by providing the information necessary to produce a sustainable management plan in order to prevent catastrophic collapses of structures and other related geohazard problems.
    Matched MeSH terms: Imaging, Three-Dimensional/methods*
  3. Teo BG, Dhillon SK, Lim LH
    PLoS One, 2013;8(10):e77650.
    PMID: 24204903 DOI: 10.1371/journal.pone.0077650
    In this paper, a digital 3D model which allows for visualisation in three dimensions and interactive manipulation is explored as a tool to help us understand the structural morphology and elucidate the functions of morphological structures of fragile microorganisms which defy live studies. We developed a deformable generic 3D model of haptoral anchor of dactylogyridean monogeneans that can subsequently be deformed into different desired anchor shapes by using direct manipulation deformation technique. We used point primitives to construct the rectangular building blocks to develop our deformable 3D model. Point primitives are manually marked on a 2D illustration of an anchor on a Cartesian graph paper and a set of Cartesian coordinates for each point primitive is manually extracted from the graph paper. A Python script is then written in Blender to construct 3D rectangular building blocks based on the Cartesian coordinates. The rectangular building blocks are stacked on top or by the side of each other following their respective Cartesian coordinates of point primitive. More point primitives are added at the sites in the 3D model where more structural variations are likely to occur, in order to generate complex anchor structures. We used Catmull-Clark subdivision surface modifier to smoothen the surface and edge of the generic 3D model to obtain a smoother and more natural 3D shape and antialiasing option to reduce the jagged edges of the 3D model. This deformable generic 3D model can be deformed into different desired 3D anchor shapes through direct manipulation deformation technique by aligning the vertices (pilot points) of the newly developed deformable generic 3D model onto the 2D illustrations of the desired shapes and moving the vertices until the desire 3D shapes are formed. In this generic 3D model all the vertices present are deployed for displacement during deformation.
    Matched MeSH terms: Imaging, Three-Dimensional/methods*
  4. Dietz HP, Severino M, Kamisan Atan I, Shek KL, Guzman Rojas R
    Ultrasound Obstet Gynecol, 2016 Aug;48(2):239-42.
    PMID: 26289617 DOI: 10.1002/uog.15728
    OBJECTIVES: The levator hiatus is the largest potential hernial portal in the human body. Excessive distensibility is associated with female pelvic organ prolapse (POP). Distension occurs not just laterally but also caudally, resulting in perineal descent and hiatal deformation or 'warping'. The aim of this study was to quantify the warping effect in symptomatic women, to validate the depth of the rendered volume used for the 'simplified method' of measuring hiatal dimensions and to determine predictors for the degree of warping.

    METHODS: This was a retrospective study utilizing records of patients referred to a tertiary urogynecological service between November 2012 and March 2013. Patients underwent a standardized interview, clinical assessment using the POP quantification system of the International Continence Society and four-dimensional translabial ultrasound. The craniocaudal difference in the location of minimal distances in mid-sagittal and coronal planes was determined by offline analysis of ultrasound volumes, and provided a numerical measure of warping. We tested potential predictors, such as demographic factors, signs and symptoms of prolapse, levator avulsion and levator distensibility, for an association with warping.

    RESULTS: Full datasets were available for 190 women. The mean craniocaudal difference in location of minimal distances in mid-sagittal and coronal planes was -1.26 mm (range, -6.7 to 4.6 mm; P 

    Matched MeSH terms: Imaging, Three-Dimensional/methods*
  5. Dong X, Xu S, Liu Y, Wang A, Saripan MI, Li L, et al.
    Cancer Imaging, 2020 Aug 01;20(1):53.
    PMID: 32738913 DOI: 10.1186/s40644-020-00331-0
    BACKGROUND: Convolutional neural networks (CNNs) have been extensively applied to two-dimensional (2D) medical image segmentation, yielding excellent performance. However, their application to three-dimensional (3D) nodule segmentation remains a challenge.

    METHODS: In this study, we propose a multi-view secondary input residual (MV-SIR) convolutional neural network model for 3D lung nodule segmentation using the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) dataset of chest computed tomography (CT) images. Lung nodule cubes are prepared from the sample CT images. Further, from the axial, coronal, and sagittal perspectives, multi-view patches are generated with randomly selected voxels in the lung nodule cubes as centers. Our model consists of six submodels, which enable learning of 3D lung nodules sliced into three views of features; each submodel extracts voxel heterogeneity and shape heterogeneity features. We convert the segmentation of 3D lung nodules into voxel classification by inputting the multi-view patches into the model and determine whether the voxel points belong to the nodule. The structure of the secondary input residual submodel comprises a residual block followed by a secondary input module. We integrate the six submodels to classify whether voxel points belong to nodules, and then reconstruct the segmentation image.

    RESULTS: The results of tests conducted using our model and comparison with other existing CNN models indicate that the MV-SIR model achieves excellent results in the 3D segmentation of pulmonary nodules, with a Dice coefficient of 0.926 and an average surface distance of 0.072.

    CONCLUSION: our MV-SIR model can accurately perform 3D segmentation of lung nodules with the same segmentation accuracy as the U-net model.

    Matched MeSH terms: Imaging, Three-Dimensional/methods*
  6. Chan VS, Mohamed F, Yusoff YA, Dewi DEO, Anuar A, Shamsudin MA, et al.
    Med Biol Eng Comput, 2020 May;58(5):889-902.
    PMID: 31599379 DOI: 10.1007/s11517-019-02044-4
    Position tracking has been widely used in medical applications, especially in 3D ultrasound imaging, where it has transformed the 2D slice limitation into 3D volume with bigger clinical impacts. As a game controller can also produce position tracking information, it has the potential to act as a low-cost and portable position tracker for ultrasound probes. This paper aims to investigate the feasibility of a game controller to perform as a position tracker and to design its implementation in 3D ultrasound imaging. The study consists of data acquisition and 3D ultrasound reconstruction for visualization. The data acquisition is accomplished by capturing the 2D ultrasound frame and its relative positional and orientation data by using an ultrasound probe and game controller respectively. These data are further reconstructed to produce 3D ultrasound volume for visualization. Our experiments include game controller position tracker testing and 3D ultrasound reconstruction on baby phantom. The results have confirmed that the game controller performance was closely aligned with that of in a robot arm. Also, the 3D ultrasound reconstruction implementation has revealed promising outcomes. With these features, the function of the currently available ultrasound probes can be prospectively improved using a game controller position tracker effectively. Graphical Abstract.
    Matched MeSH terms: Imaging, Three-Dimensional/methods*
  7. Mousa MA, Abdullah JY, Jamayet NB, Alam MK, Husein A
    Biomed Res Int, 2021;2021:6419774.
    PMID: 34447852 DOI: 10.1155/2021/6419774
    Aim: This systematic review is aimed at investigating the biomechanical stress that develops in the maxillofacial prostheses (MFP) and supporting structures and methods to optimize it. Design and Methods. A literature survey was conducted for full-text English articles which used FEA to examine the stress developed in conventional and implant-assisted MFPs from January 2010 to December 2020.

    Results: 87 articles were screened to get an update on the desired information. 74 were excluded based on a complete screening, and finally, 13 articles were recruited for complete reviewing. Discussion. The MFP is subjected to stress, which is reflected in the form of compressive and tensile strengths. The stress is mainly concentrated the resection line and around the apices of roots of teeth next to the defect. Diversity of designs and techniques were introduced to optimize the stress distribution, such as modification of the clasp design, using materials with different mechanical properties for dentures base and retainer, use of dental (DI) and/or zygomatic implants (ZI), and free flap reconstruction before prosthetic rehabilitation.

    Conclusion: Using ZI in the defective side of the dentulous maxillary defect and defective and nondefective side of the edentulous maxillary defect was found more advantageous, in terms of compression and tensile stress and retention, when compared with DI and free flap reconstruction.

    Matched MeSH terms: Imaging, Three-Dimensional/methods*
  8. Leong SS, Vijayananthan A, Yaakup NA, Shah N, Ng KH, Acharya UR, et al.
    Comput Biol Med, 2016 11 01;78:58-64.
    PMID: 27658262 DOI: 10.1016/j.compbiomed.2016.09.006
    OBJECTIVE: To determine the reproducibility of three-dimensional (3D) ultrasound (US) over two-dimensional (2D) US in characterizing atherosclerotic carotid plaques using inter- and intra-observer agreement metrics.

    METHODS: A Total of 51 patients with 105 carotid artery plaques were screened using 3D and 2D US probes attached to the same US scanner. Two independent observers characterized the plaques based on the morphological features namely echotexture, echogenicity and surface characteristics. The scores assigned to each morphological feature were used to determine intra- and inter-observer performance. The level of agreement was measured using Kappa coefficient.

    RESULTS: The first observer with 2D US showed fair (k=0.4-0.59) and very strong (k>0.8) with 3D US intra-observer agreements using three morphological features. The second observer indicated moderate strong (k=0.6-0.79) with 2D US and very strong with 3D US (k>0.8) intra-observer performances. Moderate strong (k=0.6-0.79) and very strong (k>0.8) inter-observer agreements were reported with 2D US and 3D US respectively. The results with 2D and 3D US were correlated 62% using only echotexture and 56% using surface morphology coupled with echogenicity. 3D US gave a lower score than 2D 71% of the time (p=0.005) in disagreement cases.

    CONCLUSION: High reproducibility in carotid plaque characterization was obtained using 3D US rather than 2D US. Hence, it can be a preferred imaging modality in routine or follow up plaque screening of patients with carotid artery disease.

    Matched MeSH terms: Imaging, Three-Dimensional/methods
  9. Kolivand H, Billinghurst M, Sunar MS
    PLoS One, 2016;11(12):e0166424.
    PMID: 27930663 DOI: 10.1371/journal.pone.0166424
    To achieve realistic Augmented Reality (AR), shadows play an important role in creating a 3D impression of a scene. Casting virtual shadows on real and virtual objects is one of the topics of research being conducted in this area. In this paper, we propose a new method for creating complex AR indoor scenes using real time depth detection to exert virtual shadows on virtual and real environments. A Kinect camera was used to produce a depth map for the physical scene mixing into a single real-time transparent tacit surface. Once this is created, the camera's position can be tracked from the reconstructed 3D scene. Real objects are represented by virtual object phantoms in the AR scene enabling users holding a webcam and a standard Kinect camera to capture and reconstruct environments simultaneously. The tracking capability of the algorithm is shown and the findings are assessed drawing upon qualitative and quantitative methods making comparisons with previous AR phantom generation applications. The results demonstrate the robustness of the technique for realistic indoor rendering in AR systems.
    Matched MeSH terms: Imaging, Three-Dimensional/methods
  10. Hasan CZC, Jailani R, Md Tahir N, Ilias S
    Res Dev Disabil, 2017 Jul;66:55-63.
    PMID: 28284567 DOI: 10.1016/j.ridd.2017.02.015
    Minimal information is known about the three-dimensional (3D) ground reaction forces (GRF) on the gait patterns of individuals with autism spectrum disorders (ASD). The purpose of this study was to investigate whether the 3D GRF components differ significantly between children with ASD and the peer controls. 15 children with ASD and 25 typically developing (TD) children had participated in the study. Two force plates were used to measure the 3D GRF data during walking. Time-series parameterization techniques were employed to extract 17 discrete features from the 3D GRF waveforms. By using independent t-test and Mann-Whitney U test, significant differences (p<0.05) between the ASD and TD groups were found for four GRF features. Children with ASD demonstrated higher maximum braking force, lower relative time to maximum braking force, and lower relative time to zero force during mid-stance. Children with ASD were also found to have reduced the second peak of vertical GRF in the terminal stance. These major findings suggest that children with ASD experience significant difficulties in supporting their body weight and endure gait instability during the stance phase. The findings of this research are useful to both clinicians and parents who wish to provide these children with appropriate treatments and rehabilitation programs.
    Matched MeSH terms: Imaging, Three-Dimensional/methods
  11. Farook TH, Ahmed S, Jamayet NB, Rashid F, Barman A, Sidhu P, et al.
    Sci Rep, 2023 Jan 28;13(1):1561.
    PMID: 36709380 DOI: 10.1038/s41598-023-28442-1
    The current multiphase, invitro study developed and validated a 3-dimensional convolutional neural network (3D-CNN) to generate partial dental crowns (PDC) for use in restorative dentistry. The effectiveness of desktop laser and intraoral scanners in generating data for the purpose of 3D-CNN was first evaluated (phase 1). There were no significant differences in surface area [t-stat(df) = - 0.01 (10), mean difference = - 0.058, P > 0.99] and volume [t-stat(df) = 0.357(10)]. However, the intraoral scans were chosen for phase 2 as they produced a greater level of volumetric details (343.83 ± 43.52 mm3) compared to desktop laser scanning (322.70 ± 40.15 mm3). In phase 2, 120 tooth preparations were digitally synthesized from intraoral scans, and two clinicians designed the respective PDCs using computer-aided design (CAD) workflows on a personal computer setup. Statistical comparison by 3-factor ANOVA demonstrated significant differences in surface area (P 
    Matched MeSH terms: Imaging, Three-Dimensional/methods
  12. Kolivand H, Sunar MS
    PLoS One, 2014;9(9):e108334.
    PMID: 25268480 DOI: 10.1371/journal.pone.0108334
    Realistic rendering techniques of outdoor Augmented Reality (AR) has been an attractive topic since the last two decades considering the sizeable amount of publications in computer graphics. Realistic virtual objects in outdoor rendering AR systems require sophisticated effects such as: shadows, daylight and interactions between sky colours and virtual as well as real objects. A few realistic rendering techniques have been designed to overcome this obstacle, most of which are related to non real-time rendering. However, the problem still remains, especially in outdoor rendering. This paper proposed a much newer, unique technique to achieve realistic real-time outdoor rendering, while taking into account the interaction between sky colours and objects in AR systems with respect to shadows in any specific location, date and time. This approach involves three main phases, which cover different outdoor AR rendering requirements. Firstly, sky colour was generated with respect to the position of the sun. Second step involves the shadow generation algorithm, Z-Partitioning: Gaussian and Fog Shadow Maps (Z-GaF Shadow Maps). Lastly, a technique to integrate sky colours and shadows through its effects on virtual objects in the AR system, is introduced. The experimental results reveal that the proposed technique has significantly improved the realism of real-time outdoor AR rendering, thus solving the problem of realistic AR systems.
    Matched MeSH terms: Imaging, Three-Dimensional/methods
  13. Rassem TH, Khoo BE
    ScientificWorldJournal, 2014;2014:373254.
    PMID: 24977193 DOI: 10.1155/2014/373254
    Despite the fact that the two texture descriptors, the completed modeling of Local Binary Pattern (CLBP) and the Completed Local Binary Count (CLBC), have achieved a remarkable accuracy for invariant rotation texture classification, they inherit some Local Binary Pattern (LBP) drawbacks. The LBP is sensitive to noise, and different patterns of LBP may be classified into the same class that reduces its discriminating property. Although, the Local Ternary Pattern (LTP) is proposed to be more robust to noise than LBP, however, the latter's weakness may appear with the LTP as well as with LBP. In this paper, a novel completed modeling of the Local Ternary Pattern (LTP) operator is proposed to overcome both LBP drawbacks, and an associated completed Local Ternary Pattern (CLTP) scheme is developed for rotation invariant texture classification. The experimental results using four different texture databases show that the proposed CLTP achieved an impressive classification accuracy as compared to the CLBP and CLBC descriptors.
    Matched MeSH terms: Imaging, Three-Dimensional/methods*
  14. Sim KS, Chia FK, Nia ME, Tso CP, Chong AK, Abbas SF, et al.
    Comput Biol Med, 2014 Jun;49:46-59.
    PMID: 24736203 DOI: 10.1016/j.compbiomed.2014.03.003
    A computer-aided detection auto-probing (CADAP) system is presented for detecting breast lesions using dynamic contrast enhanced magnetic resonance imaging, through a spatial-based discrete Fourier transform. The stand-alone CADAP system reduces noise, refines region of interest (ROI) automatically, and detects the breast lesion with minimal false positive detection. The lesions are then classified and colourised according to their characteristics, whether benign, suspicious or malignant. To enhance the visualisation, the entire analysed ROI is constructed into a 3-D image, so that the user can diagnose based on multiple views on the ROI. The proposed method has been applied to 101 sets of digital images, and the results compared with the biopsy results done by radiologists. The proposed scheme is able to identify breast cancer regions accurately and efficiently.
    Matched MeSH terms: Imaging, Three-Dimensional/methods
  15. Anderson PJ, Yong R, Surman TL, Rajion ZA, Ranjitkar S
    Aust Dent J, 2014 Jun;59 Suppl 1:174-85.
    PMID: 24611727 DOI: 10.1111/adj.12154
    Following the invention of the first computed tomography (CT) scanner in the early 1970s, many innovations in three-dimensional (3D) diagnostic imaging technology have occurred, leading to a wide range of applications in craniofacial clinical practice and research. Three-dimensional image analysis provides superior and more detailed information compared with conventional plain two-dimensional (2D) radiography, with the added benefit of 3D printing for preoperative treatment planning and regenerative therapy. Current state-of-the-art multidetector CT (MDCT), also known as medical CT, has an important role in the diagnosis and management of craniofacial injuries and pathology. Three-dimensional cone beam CT (CBCT), pioneered in the 1990s, is gaining increasing popularity in dental and craniofacial clinical practice because of its faster image acquisition at a lower radiation dose, but sound guidelines are needed to ensure its optimal clinical use. Recent innovations in micro-computed tomography (micro-CT) have revolutionized craniofacial biology research by enabling higher resolution scanning of teeth beyond the capabilities of MDCT and CBCT, presenting new prospects for translational clinical research. Even after four decades of refinement, CT technology continues to advance and broaden the horizons of craniofacial clinical practice and phenomics research.
    Matched MeSH terms: Imaging, Three-Dimensional/methods*
  16. Gokula K, Earnest A, Wong LC
    Radiat Oncol, 2013;8:268.
    PMID: 24229418 DOI: 10.1186/1748-717X-8-268
    This meta-analysis aims to ascertain the significance of early lung toxicity with 3-Dimensional (3D) conformal irradiation for breast carcinomas and identify the sub-groups of patients with increased risk.
    Matched MeSH terms: Imaging, Three-Dimensional/methods*
  17. Adeshina AM, Hashim R, Khalid NE, Abidin SZ
    Interdiscip Sci, 2013 Mar;5(1):23-36.
    PMID: 23605637 DOI: 10.1007/s12539-013-0155-z
    In the medical diagnosis and treatment planning, radiologists and surgeons rely heavily on the slices produced by medical imaging devices. Unfortunately, these image scanners could only present the 3-D human anatomical structure in 2-D. Traditionally, this requires medical professional concerned to study and analyze the 2-D images based on their expert experience. This is tedious, time consuming and prone to error; expecially when certain features are occluding the desired region of interest. Reconstruction procedures was earlier proposed to handle such situation. However, 3-D reconstruction system requires high performance computation and longer processing time. Integrating efficient reconstruction system into clinical procedures involves high resulting cost. Previously, brain's blood vessels reconstruction with MRA was achieved using SurLens Visualization System. However, adapting such system to other image modalities, applicable to the entire human anatomical structures, would be a meaningful contribution towards achieving a resourceful system for medical diagnosis and disease therapy. This paper attempts to adapt SurLens to possible visualisation of abnormalities in human anatomical structures using CT and MR images. The study was evaluated with brain MR images from the department of Surgery, University of North Carolina, United States and CT abdominal pelvic, from the Swedish National Infrastructure for Computing. The MR images contain around 109 datasets each of T1-FLASH, T2-Weighted, DTI and T1-MPRAGE. Significantly, visualization of human anatomical structure was achieved without prior segmentation. SurLens was adapted to visualize and display abnormalities, such as an indication of walderstrom's macroglobulinemia, stroke and penetrating brain injury in the human brain using Magentic Resonance (MR) images. Moreover, possible abnormalities in abdominal pelvic was also visualized using Computed Tomography (CT) slices. The study shows SurLens' functionality as a 3-D Multimodal Visualization System.
    Matched MeSH terms: Imaging, Three-Dimensional/methods*
  18. Daud R, Abdul Kadir MR, Izman S, Md Saad AP, Lee MH, Che Ahmad A
    J Foot Ankle Surg, 2013 Jul-Aug;52(4):426-31.
    PMID: 23623302 DOI: 10.1053/j.jfas.2013.03.007
    The trapezium shape of the talar dome limits the use of 2-dimensional plain radiography for morphometric assessment because only 2 of the 4 required parameters can be measured. We used computed tomography data to measure the 4 morphologic parameters of the trochlea tali: anterior width, posterior width, trochlea tali length, and angle of trapezium shape. A total of 99 subjects underwent computed tomography scanning, and the left and right talus bones were both virtually modeled in 3 dimensions. The 4 morphologic parameters were measured 3 times each to obtain the intraclass correlation, and analysis of variance was used to check for any significant differences between the repeated measurements. The average intraclass correlation coefficient for the measurements for 2 to 3 trials was 0.94 ± 0.04. Statistical analyses were performed on the data from all 198 talus bones using SAS software, comparing male and female and left and right bones. All 4 morphometric values were greater in the male group. No significant differences were found between the left and right talus bones. A strong positive correlation was observed between the trochlea tali length and the anterior width. The angle of trapezium shape showed no correlation with the other 3 parameters. The measurements were compared with the dimensions of the current talar components of 4 total ankle arthroplasty implants. However, most of them did not perfectly match the trapezium shape of the talus from our population. We successfully analyzed the trapezium shape of the trochlea tali using reliable virtual 3-dimensional measurements. Compared with other published reports, our study showed a relatively smaller dimension of the trochlea tali than the European counterparts.
    Matched MeSH terms: Imaging, Three-Dimensional/methods*
  19. Al-Khatib AR, Rajion ZA, Masudi SM, Hassan R, Townsend GC
    Aust Orthod J, 2012 May;28(1):22-9.
    PMID: 22866590
    The development of three-dimensional computer imaging has many applications in dentistry, including the analysis of dental casts.
    Matched MeSH terms: Imaging, Three-Dimensional/methods*
  20. Ahmad Fadzil M, Ngah NF, George TM, Izhar LI, Nugroho H, Adi Nugroho H
    PMID: 21097305 DOI: 10.1109/IEMBS.2010.5628041
    Diabetic retinopathy (DR) is a sight threatening complication due to diabetes mellitus that affects the retina. At present, the classification of DR is based on the International Clinical Diabetic Retinopathy Disease Severity. In this paper, FAZ enlargement with DR progression is investigated to enable a new and an effective grading protocol DR severity in an observational clinical study. The performance of a computerised DR monitoring and grading system that digitally analyses colour fundus image to measure the enlargement of FAZ and grade DR is evaluated. The range of FAZ area is optimised to accurately determine DR severity stage and progression stages using a Gaussian Bayes classifier. The system achieves high accuracies of above 96%, sensitivities higher than 88% and specificities higher than 96%, in grading of DR severity. In particular, high sensitivity (100%), specificity (>98%) and accuracy (99%) values are obtained for No DR (normal) and Severe NPDR/PDR stages. The system performance indicates that the DR system is suitable for early detection of DR and for effective treatment of severe cases.
    Matched MeSH terms: Imaging, Three-Dimensional/methods*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links