MATERIALS AND METHODS: Eighteen (18) participants who met the inclusion and exclusion criteria were scanned using a standard non-contrast MRI shoulder protocol including the PDFS pulse sequence and the PROPELLER PDFS pulse sequence using a small flex coil and a dedicated shoulder coil. Two experienced musculoskeletal (MSK) radiologists evaluated and graded the presence of artifacts on the MR images and the SNR and CNR were measured quantitatively.
RESULTS: The non-parametric Wilcoxon Signed Rank test revealed a significant reduction in motion and pulsation artifacts between the PROPELLER PDFS pulse sequence and the standard PDFS pulse sequence. In addition, the nonparametric Mann-Whitney U test revealed that the mean rank of SNR for the standard sequence was statistically significant when compared to the PROPELLER sequence for both coil types. The CNR of the PROPELLER sequence was statistically significant between fat-fluid, bone-fluid, bonetendon, bone-muscle, and muscle-fluid when using SFC and DSC.
CONCLUSION: This study proved that the PROPELLER-PDFS pulse sequence effectively eliminates motion and pulsation artifacts, regardless of the coils utilised. The PROPELLERPDFS pulse sequence can therefore be implemented into the standard MRI shoulder procedure.
AIMS: The objective of this study was to compare the image quality for DSPM and FFDM using a grading scale based on previously published articles.
MATERIALS AND METHODS: This comparative diagnostic study was done for 5-month duration at the Breast Clinic. The system used was the Lorad Selenia FFDM system and the Mammomat 3000 Nova DSPM system. The craniocaudal and mediolateral oblique projections were done on both breast on 58 asymptomatic women using both DSPM and FFDM. The mammograms were evaluated for eight criteria of image quality: Tissue coverage, compression, exposure, contrast, resolution, noise, artifact, and sharpness by two independent radiologists.
STATISTICAL ANALYSIS: Wilcoxon Signed Rank Test and Weighted Kappa.
RESULTS: FFDM was rated significantly better (P < 0.05) for five aspects: Tissue coverage, compression, contrast, exposure, and resolution and equal to DSPM for sharpness, noise, and artifact.
CONCLUSION: FFDM was superior in five aspects and equal to DSPM for three aspects of image quality.
METHODS: The pterygium screening system was tested on two normal eye databases (UBIRIS and MILES) and two pterygium databases (Australia Pterygium and Brazil Pterygium). This system comprises four modules: (i) a preprocessing module to enhance the pterygium tissue using HSV-Sigmoid; (ii) a segmentation module to differentiate the corneal region and the pterygium tissue; (iii) a feature extraction module to extract corneal features using circularity ratio, Haralick's circularity, eccentricity, and solidity; and (iv) a classification module to identify the presence or absence of pterygium. System performance was evaluated using support vector machine (SVM) and artificial neural network.
RESULTS: The three-step frame differencing technique was introduced in the corneal segmentation module. The output image successfully covered the region of interest with an average accuracy of 0.9127. The performance of the proposed system using SVM provided the most promising results of 88.7%, 88.3%, and 95.6% for sensitivity, specificity, and area under the curve, respectively.
CONCLUSION: A basic platform for computer-aided pterygium screening was successfully developed using the proposed modules. The proposed system can classify pterygium and non-pterygium cases reasonably well. In our future work, a standard grading system will be developed to identify the severity of pterygium cases. This system is expected to increase the awareness of communities in rural areas on pterygium.