Displaying publications 1 - 20 of 236 in total

Abstract:
Sort:
  1. Jamaluddin NAN, Jasmani L, Md Pisar M, Adnan S, Rusli R, Zakaria S
    Carbohydr Polym, 2024 Oct 15;342:122405.
    PMID: 39048240 DOI: 10.1016/j.carbpol.2024.122405
    Nanofibrillated cellulose (NFC) has found extensive potential and existing utilizations across various industries. Nonetheless, a notable constraint of NFC lies in its inherent hydrophilic nature, which restricts its suitability for non-aqueous application. This study aims at synthesising hydrophobic NFC through a two-step surface modification by reacting NFC with tannic acid and amine group. The study also investigated the effect of using various alkylamines on the properties of modified NFC. The hydrophobic NFC was characterized using various analytical techniques namely Thermogravimetric Analysis (TGA), X-Ray Diffraction analysis (XRD), Atomic Force Microscopy (AFM), Fourier Transform Infrared Spectroscopy (FTIR), elemental analysis, and contact angle measurements. The present study also looked into the possible use of modified NFC as a pharmaceutical excipient for the delivery of water insoluble curcumin. The analysis of curcumin binding onto the modified NFC was conducted using UV-Visible spectrophotometry. The findings from the study indicated that the modified NFC effectively bound a substantial quantity of curcumin (80 % - 87 %) and the binding varied for samples of different degree of substitution.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions*
  2. Wong SK, Supramaniam J, Wong TW, Soottitantawat A, Ruktanonchai UR, Tey BT, et al.
    Carbohydr Res, 2021 Jun;504:108336.
    PMID: 33964507 DOI: 10.1016/j.carres.2021.108336
    The development of hybrid polysaccharide-protein complexes as Pickering emulsion stabilizers has attracted increasing research interest in recent years. This work presents an eco-friendly surface modification strategy to functionalize hydrophilic cellulose nanocrystals (CNC) using hydrophobic soy protein isolate (SPI) via mussel adhesive-inspired poly (l-dopa) (PLD) to develop improved nanoconjugates as stabilizers for oil-in-water Pickering emulsion. The physicochemical properties of the CNC-PLD-SPI nanoconjugate were evaluated by solid-state 13C NMR, FT-IR, TGA, XRD, contact angle analysis, and TEM. The modified CNC (conjugation content of 38.22 ± 1.21%) had lowered crystallinity index, higher thermal stability, and more hydrophobic than unmodified CNC, with an average particle size of 309.9 ± 8.0 nm. Use of amphiphilic CNC-PLD-SPI nanoconjugate with greater conformational flexibility as Pickering stabilizer produced oil-in-water emulsions with greater physical stability.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  3. Yap JX, Leo CP, Mohd Yasin NH, Derek CJC
    Chemosphere, 2021 Jun;273:129657.
    PMID: 33524750 DOI: 10.1016/j.chemosphere.2021.129657
    Microalgae cultivation using open cultivation systems requires large area and it is susceptible to contamination as well as weather changes. Meanwhile, the closed systems require large capital investment, and they are susceptible to the build-up of dissolved oxygen. Air-liquid interface culture systems with low water-footprint, but high packing density can be used for microalgae cultivation if low-cost culture scaffolds are available. In this study, cellulose-based scaffolds were synthesized using NaOH/urea aqueous solution as the solvent. Titanium dioxide (TiO2), silica gel and polyethylene glycol 1000 (PEG 1000) nanoparticles were added into the membrane scaffolds to increase the hydrophilicity of nutrient absorbing to support the growth of microalgae. The membrane scaffolds were characterized by FTIR, SEM, contact angle, porosity and porometry. All three nanoparticles additives showed their ability in reducing the contact angle of membrane scaffolds from 63.4 ± 2.3° to a range of 52.6 ± 1.2° to 38.8 ± 1.5° due to the hydrophilic properties of the nanoparticles. The decreasing in pore size when nanoparticles were added did not affect the porosity of membrane scaffolds. Cellulose membrane scaffold with TiO2 showed the highest percentage of microalgae Navicula incerta growth rate of 22.1% because of the antibacterial properties of TiO2 in lowering the risk of cell contamination and enhancing the growth of N. incerta. The results exhibited that cellulose-based scaffold with TiO2 added could be an effective support in plant cell culture field.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  4. Chik MW, Hussain Z, Zulkefeli M, Tripathy M, Kumar S, Majeed ABA, et al.
    Drug Deliv Transl Res, 2019 04;9(2):578-594.
    PMID: 29594914 DOI: 10.1007/s13346-018-0505-9
    Carbon nanotubes (CNTs) possess outstanding properties that could be useful in several technological, drug delivery, and diagnostic applications. However, their unique physical and chemical properties are hindered due to their poor solubility. This article review's the different ways and means of solubility enhancement of single-wall carbon nanotubes (SWNTs). The advantages of SWNTs over the multi-walled carbon nanotubes (MWNTs) and the method of non-covalent modification for solubility enhancement has been the key interest in this review. The review also highlights a few examples of dispersant design. The review includes some interesting utility of SWNTs being wrapped with polymer especially in biological media that could mediate proper drug delivery to target cells. Further, the use of wrapped SWNTs with phospholipids, nucleic acid, and amphiphillic polymers as biosensors is of research interest. The review aims at summarizing the developments relating to wrapped SWNTs to generate further research prospects in healthcare.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  5. Lee XJ, Show PL, Katsuda T, Chen WH, Chang JS
    Bioresour Technol, 2018 Dec;269:489-502.
    PMID: 30172460 DOI: 10.1016/j.biortech.2018.08.090
    Membrane bioreactor (MBR) is regarded as the state-of-the-art technology in separation processes. Surface modification techniques play a critical role in improving the conventional membrane system which is mostly hydrophobic in nature. The hydrophobic nature of membranes is known to cause fouling, resulting in high maintenance costs and shorter lifespan of MBR. Thus, surface grafting aims to improve the hydrophilicity of bio-based membrane systems. This review describes the major surface grafting techniques currently used in membranes, including photo induced grafting, plasma treatment and plasma induced grafting, radiation induced grafting, thermal induced grafting and ozone induced grafting. The advantages and disadvantages of each method is discussed along with their parametric studies. The potential applications of MBR are very promising, but some integral membrane properties could be a major challenge that hinders its wider reach. The fouling issue could be resolved with the surface grafting techniques to achieve better performance of MBRs.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  6. Nadiah Ramlan, Nazirah Wahidah Mohd Zamri, Mohamad Yusof Maskat, Mohd Suzeren Md Jamil, Saiful Irwan Zubairi, Chin OH, et al.
    Sains Malaysiana, 2018;47:1147-1155.
    A 50Hz glow discharge He/CH4
    plasma was generated and applied for the glass surface modification to reduce the powder
    adhesion on wall of spray dryer. The hydrophobicity of the samples determined by the water droplet contact angle and
    adhesion weight on glass, dependent on the CH4 flow rate and plasma exposure time. The presence of CH3
    groups and
    higher surface roughness of the plasma treated glass were the factors for its hydrophobicity development. Response
    surface methodology (RSM) results using central composite rotatable design (CCRD) showed that optimal responses
    were obtained by the combination of parameters, CH4
    gas flow rate = 3 sccm and exposure time = 10 min. In optimum
    conditions, the contact angle increased by 47% and the weight of the adhesion reduced by 38% (w/w). The plasma
    treatment could enhance the value of the contact angle and thus reduced the adhesion on the spray dryer glass surface.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  7. Usman J, Salami BA, Gbadamosi A, Adamu H, Usman AG, Benaafi M, et al.
    Chemosphere, 2023 Aug;331:138726.
    PMID: 37116721 DOI: 10.1016/j.chemosphere.2023.138726
    Due to the significant energy and economic losses brought on by the global oil spill, there has been an increased interest in oil-water separation. This study presents strong non-linear machine learning models (support vector regression (SVR) and Gaussian process regression (GPR)) with the Response surface method (RSM) to predict the oil flux and oil-water separation efficiency of wastewater using ceramic membrane technology. For the model development and prediction of oil flux (OF) and oil-water separation efficiency (OSE), oil concentration (mg/L), feed flow rate (mL/min), and pH were considered as input variables. The input variables are combined in three combinations to study the most contributing input features to the models' performance. Mean square error (MSE) and Nash-Sutcliffe coefficient efficiency (NSE) were used to assess the prediction performances of the developed models with the different number of input combinations considered in the study. For the two target variables (OF and OSE), GPR and SVR models were used to separately predict them. For OF, the SVR-2 [Combo-2] model (MSE = 0.9255 and NSE = 2.7976) performed better with higher prediction accuracy compared to GPR-2 [Combo-2] model (MSE = 0.763 and NSE = 6.437). In addition, for OSE, the GPR-3 [Combo-3] model (MSE = 0.995 and NSE = 0.5544) performed slightly better than SVR-3 [Combo-3] model (MSE = 0.992 and NSE = 0.8066). The results showed that the SVR model with the combo-2 and GPR-3 models for OF and OSE variables are the proposed models with the best performance and accuracy. This machine learning study will aid in better evaluating the function of materials such as ceramic in membrane performance features such as oil flux and rejection prediction, separation efficiency, water recovery, membrane fouling, and so on. As for academics and manufacturers, this machine learning (ML) strategy will boost performance and allow a better understanding of system governance.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  8. Hu Q, Ma F, Wei H, Yang W, Deng S, Yu X, et al.
    J Texture Stud, 2023 Aug;54(4):582-594.
    PMID: 37400374 DOI: 10.1111/jtxs.12785
    The aim of this study was to compare the investigations of various contents of egg white protein (2.0%-8.0%, EWP), microbial transglutaminase (0.1%-0.4%, MTGase), and konjac glucomannan (0.5%-2.0%, KGM) on the gelling properties and rheological behavior of Trachypenaeus Curvirostris shrimp surimi gel (SSG), and assessed the modification mechanisms through the analysis of structure characteristics. The findings suggested that all modified SSG samples (expect SSG-KGM2.0% ) had the higher gelling properties and the denser network structure than those of unmodified SSG. Meanwhile, EWP could give SSG a better appearance than MTGase and KGM. Rheological results showed that SSG-EWP6% and SSG-KGM1.0% had the highest G' and G″, demonstrating that the formation of higher levels of elasticity and hardness. All modifications could increase gelation rates of SSG along with the reduction of G″ during the degeneration of protein. According to the FTIR results, three modification methods changed SSG protein conformation with the increasing α-helix and β-sheet contents and the decreasing of random coil content. LF-NMR results indicated that more free water could be transformed into immobilized water in the modified SSG gels, which contributed to improve the gelling properties. Furthermore, molecular forces showed that EWP and KGM could further increase the hydrogen bonds and hydrophobic interaction in SSG gels, while MTGase could induce the formation of more disulfide bonds. Thus, compared with another two modifications, EWP modified SSG gels showed the highest gelling properties.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  9. Poulose A, Mathew A, Uthaman A, Lal HM, Parameswaranpillai J, Mathiazhagan A, et al.
    Int J Biol Macromol, 2024 Jan;255:128004.
    PMID: 37979737 DOI: 10.1016/j.ijbiomac.2023.128004
    Cellulose nanofibers have been extracted from arecanut palm sheath fibers via mild oxalic acid hydrolysis coupled with steam explosion technique. Cellulose nanofibers with diameter of 20.23 nm were obtained from arecanut palm sheath fibers. A series of robust hydrophobic cellulose nanopapers were fabricated by combining the synergistic effect of surface roughness induced by the successful deposition of zinc oxide (ZnO) nanoflakes and stearic acid modification via a simple and cost-effective method. In this work, agro-waste arecanut palm sheath was employed as a novel source for the extraction of cellulose nanofibers. 2 wt% of ZnO nanoflakes and 1 M concentration of stearic acid were used to fabricate mechanically robust hydrophobic cellulose nanopapers with a water contact angle (WCA) of 134°. During the deposition of zinc oxide nanoflakes on the CNP for inducing surface roughness, a hydrogen bonding interaction is formed between the hydroxyl groups of cellulose nanofibers and the zinc oxide nanoflakes. When this surface roughened CNP was dipped in stearic acid solution. The hydroxyl groups in zinc oxide nanoflakes undergoes esterification reaction with carboxyl groups in stearic acid solution forming an insoluble stearate layer and thus inducing hydrophobicity on CNP. The fabricated hydrophobic cellulose nanopaper displayed a tensile strength of 22.4 MPa and better UV blocking ability which is highly desirable for the sustainable packaging material in the current scenario. Furthermore, the service life of the pristine and modified cellulose nanopapers was predicted using the Arrhenius equation based on the tensile properties obtained during the accelerated ageing studies. The outcome of this study would be broadening the potential applications of hydrophobic and mechanically robust cellulose nanopapers in sustainable packaging applications.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  10. Chua MX, Saravanan G, Cheah YT, Chan DJC
    Plant Physiol Biochem, 2024 Mar;208:108485.
    PMID: 38461755 DOI: 10.1016/j.plaphy.2024.108485
    Duckweed, a floating macrophyte, has attracted interest in various fields such as animal feedstocks and bioenergy productions. Its enriched nutritional content and rapid growth rate make it particularly promising. However, common laboratory cultures of duckweed often experience fronds layering, diminishing the efficiency of sunlight capturing due to limited surface area on conventional cultivation platforms. In this work, we aimed to address the issue of fronds layering by introducing a novel cultivation platform - a superhydrophobic coated acrylic sheet. The sheet was prepared by spray-coating a suspension of beeswax and ethanol, and its effectiveness was evaluated by comparing the growth performance of giant duckweed, Spirodela polyrhiza, on this platform with that on a modified version. The superhydrophobic coated acrylic sheet (SHPA) and its variant with a metal mesh added (SHPAM) were employed as growing platforms, with a glass jar serving as the control. The plantlets were grown for 7 days with similar growth conditions under low light stress (25 μmol/m2/s). SHPAM demonstrated superior growth performance, achieving a mass gain of 102.12 ± 17.18 %, surpassing both SHPA (89.67 ± 14.97 %) and the control (39.26 ± 8.94 %). For biochemical compositions, SHPAM outperformed in chlorophyll content, protein content and lipid content. The values obtained were 1.021 ± 0.076 mg/g FW, 14.59 ± 0.58 % DW and 6.21 ± 0.75 % DW respectively. Therefore, this work proved that incorporation of superhydrophobic coatings on a novel cultivation platform significantly enhanced the biomass production of S. polyrhiza. Simultaneously, the biochemical compositions of the duckweeds were well-maintained, showcasing the potential of this approach for optimized duckweed cultivation.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  11. Alshati F, Alahmed TAA, Sami F, Ali MS, Majeed S, Murtuja S, et al.
    Curr Pharm Des, 2023;29(36):2853-2866.
    PMID: 37946351 DOI: 10.2174/0113816128266398231027100119
    Many methods, including solid dispersion, micellization, and inclusion complexes, have been employed to increase the solubility of potent drugs. Beta-cyclodextrin (βCD) is a cyclic oligosaccharide consisting of seven glucopyranoside molecules, and is a widely used polymer for formulating soluble inclusion complexes of hydrophobic drugs. The enzymatic activity of Glycosyltransferase or α-amylase converts starch or its derivatives into a mixture of cyclodextrins. The βCD units are characterized by α -(1-4) glucopyranose bonds. Cyclodextrins possess certain properties that make them very distinctive because of their toroidal or truncated cage-like supramolecular configurations with multiple hydroxyl groups at each end. This allowed them to encapsulate hydrophobic compounds by forming inclusion complexes without losing their solubility in water. Chemical modifications and newer derivatives, such as methylated βCD, more soluble hydroxyl propyl methyl βCD, and sodium salts of sulfobutylether-βCD, known as dexolve® or captisol®, have envisaged the use of CDs in various pharmaceutical, medical, and cosmetic industries. The successful inclusion of drug complexes has demonstrated improved solubility, bioavailability, drug resistance reduction, targeting, and penetration across skin and brain tissues. This review encompasses the current applications of β-CDs in improving the disease outcomes of antimicrobials and antifungals as well as anticancer and anti-tubercular drugs.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  12. Seah MQ, Ng ZC, Lai GS, Lau WJ, Al-Ghouti MA, Alias NH, et al.
    Chemosphere, 2024 May;356:141960.
    PMID: 38604517 DOI: 10.1016/j.chemosphere.2024.141960
    Pesticides are used in agriculture to protect crops from pathogens, insects, fungi and weeds, but the release of pesticides into surface/groundwater by agriculture runoff and rain has raised serious concerns not only for the environment but also for human health. This study aimed to investigate the impact of surface properties on the performance of seven distinct membrane types utilized in nanofiltration (NF), reverse osmosis (RO) and forward osmosis (FO) processes in eliminating multiple pesticides from spiked water. Out of the membranes tested, two are self-fabricated RO membranes while the rest are commercially available membranes. Our results revealed that the self-fabricated RO membranes performed better than other commercial membranes (e.g., SW30XLE, NF270, Duracid and FO) in rejecting the targeted pesticides by achieving at least 99% rejections regardless of the size of pesticides and their log Kow value. Despite the marginally lower water flux exhibited by the self-fabricated membrane compared to the commercial BW30 membrane, its exceptional ability to reject both mono- and divalent salts renders it more apt for treating water sources containing not only pesticides but also various dissolved ions. The enhanced performance of the self-fabricated RO membrane is mainly attributed to the presence of a hydrophilic interlayer (between the polyamide layer and substrate) and the incorporation of hydrophilic nanosheets in tuning its surface characteristics. The findings of the work provide insight into the importance of membrane surface modification for the application of not only the desalination process but also for the removal of contaminants of emerging concern.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  13. Suteris NN, Yasin A, Misnon II, Roslan R, Zulkifli FH, Rahim MHA, et al.
    Int J Biol Macromol, 2022 Feb 15;198:147-156.
    PMID: 34971642 DOI: 10.1016/j.ijbiomac.2021.12.006
    This article demonstrates the development of nanofibrous cloths by electrospinning of renewable materials, i.e., curcumin-loaded 90% cellulose acetate (CA)/10% poly(ε-caprolactone) (PCL), for applications in regenerative medicine. The CA is derived from the biomass waste of the oil palm plantation (empty fruit bunch). The nanofiber scaffolds are characterized for the fiber morphology, microstructure, thermal properties, and wettability. The optimized smooth and bead-free electrospun fiber cloth contains 90% CA and 10% PCL in two curcumin compositions (0.5 and 1 wt%). The role of curcumin is shown to be two-fold: the first is its function as a drug and the second is its role in lowering the water contact angle and increasing the hydrophilicity. The hydrophilicity enhancements are related to the hydrogen bonding between the components. The enhanced hydrophilicity contributed to improve the swelling behavior of the scaffolds; the CA/PCL/Cur (0.5%) and the CA/PCL/Cur (1.0%) showed swelling of ~700 and 950%, respectively, in phosphate-buffered saline (PBS). The drug-release studies revealed the highest cumulative drug release of 60% and 78% for CA/PCL/Cur (0.5%) and CA/PCL/Cur (1.0%) nanofibers, respectively. The in-vitro studies showed that CA/PCL/Cur (0.5 wt%) and CA/PCL/Cur (1.0 wt%) nanofiber scaffolds facilitate a higher proliferation and expression of actin in fibroblasts than those scaffolds without curcumin for wound healing applications.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  14. Foo KS, Bavoh CB, Lal B, Mohd Shariff A
    Molecules, 2020 Aug 15;25(16).
    PMID: 32824121 DOI: 10.3390/molecules25163725
    In this study, series of non-ionic surfactants from Span and Tween are evaluated for their ability to affect the viscosity profile of cyclopentane hydrate slurry. The surfactants; Span 20, Span 40, Span 80, Tween 20, Tween 40 and Tween 80 were selected and tested to provide different hydrophilic-hydrophobic balance values and allow evaluation their solubility impact on hydrate formation and growth time. The study was performed by using a HAAKE ViscotesterTM 500 at 2 °C and a surfactant concentration ranging from 0.1 wt%-1 wt%. The solubility characteristic of the non-ionic surfactants changed the hydrate slurry in different ways with surfactants type and varying concentration. The rheological measurement suggested that oil-soluble Span surfactants was generally inhibitive to hydrate formation by extending the hydrate induction time. However, an opposite effect was observed for the Tween surfactants. On the other hand, both Span and Tween demonstrated promoting effect to accelerate hydrate growth time of cyclopentane hydrate formation. The average hydrate crystallization growth time of the blank sample was reduced by 86% and 68% by Tween and Span surfactants at 1 wt%, respectively. The findings in this study are useful to understand the rheological behavior of surfactants in hydrate slurry.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions*
  15. Wan Jusoh WZA, Abdul Rahman S, Ahmad AL, Mohd Mokhtar N
    Data Brief, 2019 Jun;24:103910.
    PMID: 31193576 DOI: 10.1016/j.dib.2019.103910
    This paper focus to examine the best molecular interaction between Polyamide Thin Film Composite (PA TFC) layers with different properties of the support membrane. The support membrane of Nylon 66 (N66) and Polyvinylidene fluoride (PVDF) was chosen to represent the hydrophilic and hydrophobic model respectively in the Molecular Dynamic (MD) simulation. The Condensed-Phase Optimized Molecular Potential for Atomistic Simulation Studies (COMPASS) force field was used with the total simulation runs were set 1000 picoseconds run production ensembles. The temperature and pressure set for both ensembles were 298 K and 1 atm respectively. The validity of our model densities data was check and calculated where the deviation must be less than 6%. The comparison between hydrophobic and hydrophilic of the support membrane data was examined by the distance and magnitude of intensity of the Radial Distribution Function (RDF's) trends.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  16. Moeinzadeh R, Jadval Ghadam AG, Lau WJ, Emadzadeh D
    Carbohydr Polym, 2019 Dec 01;225:115212.
    PMID: 31521264 DOI: 10.1016/j.carbpol.2019.115212
    In this work, nanocomposite ultrafiltration (UF) membranes were synthesized through addition of different quantities of amino-functionalized nanocrystalline cellulose (NCs) in order to improve membrane anti-fouling resistance against oil depositions. The characterization results demonstrated that the overall porosity and hydrophilicity of the membranes were improved significantly upon addition of NCs despite a decrease in the pore size of nanocomposite membranes. The UF performance results showed that the nanocomposite membrane incorporated with 1 wt% NCs achieved an optimal water flux improvement, i.e., approximately 43% higher than the pristine membrane. Such nanocomposite membrane also exhibited promising oil rejection (>98.2%) and excellent water flux recovery rate of ˜98% and ˜85% after one and four cycles of treating 250-ppm oil-in-water emulsion solution, respectively. The desirable anti-fouling properties of nanocomposite membrane can be attributed to the existence of hydrophilic functional groups (-OH) on the surface of membrane stemming from addition of NCs that renders the membrane less vulnerable to fouling during oil-in-water emulsion treatment.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  17. Ong CC, Sundera Murthe S, Mohamed NM, Perumal V, Mohamed Saheed MS
    ACS Omega, 2018 Nov 30;3(11):15907-15915.
    PMID: 31458235 DOI: 10.1021/acsomega.8b01566
    This article demonstrates a novel nanoscale surface modification method to enhance the selectivity of porous poly(dimethylsiloxane) (PDMS) in removing oil from water. The surface modification method is simple and low cost by using sugar as a sacrificial template for temporal adhering of carbon nanotubes (CNT) before addition of PDMS prepolymer to encapsulate the CNT on its surface once polymerized. The PDMS-CNT demonstrated a tremendous increase in absorption capacity up to 3-fold compared to previously reported absorbents composed solely of PDMS. Besides showcasing excellent absorption capacity, the PDMS-CNT also shows a faster absorption rate (25 s) as compared to that of pure PDMS (40 s). The enhanced absorption rate is due to the incorporation of CNT, which roughens the surface of the polymer at the nanoscale and lowers the surface energy of porous PDMS while at the same time increasing the absorbent hydrophobicity and oleophilicity. This property makes the absorbent unique in absorbing only oil but repelling water at the same time. The PDMS-CNT is an excellent absorbent material with outstanding recyclability and selectivity for removing oil from water.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  18. Wang Y, Lee SM, Gentle IR, Dykes GA
    Biofouling, 2020 11;36(10):1227-1242.
    PMID: 33412938 DOI: 10.1080/08927014.2020.1865934
    A statistical approach using a polynomial linear model in combination with a probability distribution model was developed to mathematically represent the process of bacterial attachment and study its mechanism. The linear deterministic model was built based on data from experiments investigating bacterial and substratum surface physico-chemical factors as predictors of attachment. The prediction results were applied to a normal-approximated binomial distribution model to probabilistically predict attachment. The experimental protocol used mixtures of Streptococcus salivarius and Escherichia coli, and mixtures of porous poly(butyl methacrylate-co-ethyl dimethacrylate) and aluminum sec-butoxide coatings, at varying ratios, to allow bacterial attachment to substratum surfaces across a range of physico-chemical properties (including the surface hydrophobicity of bacterial cells and the substratum, the surface charge of the cells and the substratum, the substratum surface roughness and cell size). The model was tested using data from independent experiments. The model indicated that hydrophobic interaction was the most important predictor while reciprocal interactions existed between some of the factors. More importantly, the model established a range for each factor within which the resultant attachment is unpredictable. This model, however, considers bacterial cells as colloidal particles and accounts only for the essential physico-chemical attributes of the bacterial cells and substratum surfaces. It is therefore limited by a lack of consideration of biological and environmental factors. This makes the model applicable only to specific environments and potentially provides a direction to future modelling for different environments.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  19. Ayu RS, Khalina A, Harmaen AS, Zaman K, Mohd Nurrazi N, Isma T, et al.
    Sci Rep, 2020 01 24;10(1):1166.
    PMID: 31980742 DOI: 10.1038/s41598-020-58278-y
    In this study, it focused on empty fruit brunch (EFB) fibres reinforcement in polybutylene succinate (PBS) with modified tapioca starch by using hot press technique for the use of agricultural mulch film. Mechanical, morphological and thermal properties were studied. Mechanical analysis showed decreased in values of modulus strength for both tensile and flexural testing for fibres insertion. Higher EFB fibre contents in films resulted lower mechanical properties due to poor fibre wetting from insufficient matrix. This has also found evident in SEM micrograph, showing poor interfacial bonding. Water vapour permeability (WVP) shows as higher hydrophilic EFB fibre reinforcement contents, the rate of WVP also increase. Besides this, little or no significant changes on thermal properties for composite films. This is because high thermal stability PBS polymer show its superior thermal properties dominantly. Even though EFB fibres insertion into PBS/tapioca starch biocomposite films have found lower mechanical properties. It successfully reduced the cost of mulch film production without significant changes of thermal performances.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  20. Liu C, Zhao M, Zheng Y, Cheng L, Zhang J, Tee CATH
    Langmuir, 2021 Jan 26;37(3):983-1000.
    PMID: 33443436 DOI: 10.1021/acs.langmuir.0c02758
    When two or more droplets coalesce on a superhydrophobic surface, the merged droplet can jump spontaneously from the surface without requiring any external energy. This phenomenon is defined as coalescence-induced droplet jumping and has received significant attention due to its potential applications in a variety of self-cleaning, anti-icing, antifrosting, and condensation heat-transfer enhancement uses. This article reviews the research and applications of coalescence-induced droplet jumping behavior in recent years, including the influence of droplet parameters on coalescence-induced droplet jumping, such as the droplet size, number, and initial velocity, to name a few. The main structure types and influence mechanism of the superhydrophobic substrates for coalescence-induced droplet jumping are described, and the potential application areas of coalescence-induced droplet jumping are summarized and forecasted.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links