Displaying all 5 publications

Abstract:
Sort:
  1. Ismail N, Akhtar MN, Ismail M, Zareen S, Shah SA, Lajis NH, et al.
    Nat Prod Res, 2015;29(16):1571-4.
    PMID: 25471591 DOI: 10.1080/14786419.2014.985676
    The stem bark extracts of Knema laurina inhibited the hydrogen peroxide (H2O2)- and aggregated amyloid β-peptide 1-42 length (Aβ(1-42))-induced cell death in differentiated SH-SY5Y cells. Exposure of 250 μM H2O2 or 20 μM Aβ(1-42) to the cells for 24 h reduced 50% of cell viability. Pretreatment of cells with ethyl acetate extract (EAE) or n-butanol extract (BE) at 300 μg/mL and then exposure to H2O2 protected the cells against the neurotoxic effects of H2O2. Besides, methanolic extract (ME) at 1 and 10 μg/mL exerted neuroprotective effect on Aβ(1-42)-induced toxicity to the cells. These results showed that EAE, BE and ME exhibited neuroprotective activities against H2O2- and Aβ(1-42)-induced cell death. Flavonoids (3-6) and β-sitosterol glucoside (8) were isolated from the EAE. Compound 1 was isolated from hexane extract, and compounds 2 and 7 were isolated from dichloromethane extract. All these observations provide the possible evidence for contribution in the neuroprotective effects.
    Matched MeSH terms: Hydrogen Peroxide/adverse effects
  2. Shukrimi A, Aminudin CA, Azril MA, Hadi MR
    Med J Malaysia, 2006 Feb;61 Suppl A:88-90.
    PMID: 17042238
    We report a case of a previously healthy 53-year-old man who developed an intra-operative catastrophic event occurring in association with the use of hydrogen peroxide for wound irrigation following surgical debridement of a chronic osteomyelitis lesion of the humerus. It is our intention to highlight this potentially fatal consequence of hydrogen peroxide irrigation as part of bone debridement procedure. This case will serve as a reminder to orthopaedic surgeons who frequently use hydrogen peroxide in their surgical practice.
    Matched MeSH terms: Hydrogen Peroxide/adverse effects*
  3. Rahim SM, Taha EM, Al-janabi MS, Al-douri BI, Simon KD, Mazlan AG
    PMID: 25435631
    BACKGROUND: Cymbopogon citratus (Poaceae) a tropical perennial herb plant that is widely cultivated to be eaten either fresh with food or dried in tea or soft drink has been reported to possess a number of medicinal and aromatic properties. This study aimed at evaluating the protective effects of C. citratus aqueous extract against liver injury induced by hydrogen peroxide (H2O2), in male rats.

    MATERIALS AND METHODS: Twenty-five rats were randomly divided into five different groups of five animals in each group; (1) Control. (2) Received H2O2 (0.5%) with drinking water. (3), and (4) received H2O2 and C. citratus (100 mg·kg(-1) b wt), vitamin C (250 mg·kg(-1) b wt) respectively. (5), was given C. citratus alone. The treatments were administered for 30 days. Blood samples were collected and serum was used for biochemical assay including liver enzymes activities, total protein, total bilirubin and malonaldehyde, glutathione in serum and liver homogenates. Liver was excised and routinely processed for histological examinations.

    RESULTS: C. citratus attenuated liver damage due to H2O2 administration as indicated by the significant reduction (p<0.05), in the elevated levels of ALT, AST, ALP, LDH, TB, and MDA in serum and liver homogenates; increase in TP and GSH levels in serum and liver homogenates; and improvement of liver histo-pathological changes. These effects of the extract were similar to that of vitamin C which used as antioxidant reference.

    CONCLUSION: C. citratus could effectively ameliorate H2O2-induced oxidative stress and prevent liver injury in male rats.

    Matched MeSH terms: Hydrogen Peroxide/adverse effects
  4. Eachempati P, Kumbargere Nagraj S, Kiran Kumar Krishanappa S, Gupta P, Yaylali IE
    Cochrane Database Syst Rev, 2018 12 18;12:CD006202.
    PMID: 30562408 DOI: 10.1002/14651858.CD006202.pub2
    BACKGROUND: With the increased demand for whiter teeth, home-based bleaching products, either dentist-prescribed or over-the-counter products have been exponentially increasing in the past few decades. This is an update of a Cochrane Review first published in 2006.

    OBJECTIVES: To evaluate the effects of home-based tooth whitening products with chemical bleaching action, dispensed by a dentist or over-the-counter.

    SEARCH METHODS: Cochrane Oral Health's Information Specialist searched the following databases: Cochrane Oral Health's Trials Register (to 12 June 2018), the Cochrane Central Register of Controlled Trials (CENTRAL; 2018, Issue 6) in the Cochrane Library (searched 12 June 2018), MEDLINE Ovid (1946 to 12 June 2018), and Embase Ovid (1980 to 12 June 2018). The US National Institutes of Health Ongoing Trials Register ClinicalTrials.gov (12 June 2018) and the World Health Organization International Clinical Trials Registry Platform (12 June 2018) were searched for ongoing trials. No restrictions were placed on the language or date of publication when searching the electronic databases.

    SELECTION CRITERIA: We included in our review randomised controlled trials (RCTs) which involved adults who were 18 years and above, and compared dentist-dispensed or over-the-counter tooth whitening (bleaching) products with placebo or other comparable products.Quasi-randomised trials, combination of in-office and home-based treatments, and home-based products having physical removal of stains were excluded.

    DATA COLLECTION AND ANALYSIS: Two review authors independently selected trials. Two pairs of review authors independently extracted data and assessed risk of bias. We estimated risk ratios (RRs) for dichotomous data, and mean differences (MDs) or standardised mean difference (SMD) for continuous data, with 95% confidence intervals (CIs). We assessed the certainty of the evidence using the GRADE approach.

    MAIN RESULTS: We included 71 trials in the review with 26 studies (1398 participants) comparing a bleaching agent to placebo and 51 studies (2382 participants) comparing a bleaching agent to another bleaching agent. Two studies were at low overall risk of bias; two at high overall risk of bias; and the remaining 67 at unclear overall risk of bias.The bleaching agents (carbamide peroxide (CP) gel in tray, hydrogen peroxide (HP) gel in tray, HP strips, CP paint-on gel, HP paint-on gel, sodium hexametaphosphate (SHMP) chewing gum, sodium tripolyphosphate (STPP) chewing gum, and HP mouthwash) at different concentrations with varying application times whitened teeth compared to placebo over a short time period (from 2 weeks to 6 months), however the certainty of the evidence is low to very low.In trials comparing one bleaching agent to another, concentrations, application method and application times, and duration of use varied widely. Most of the comparisons were reported in single trials with small sample sizes and event rates and certainty of the evidence was assessed as low to very low. Therefore the evidence currently available is insufficient to draw reliable conclusions regarding the superiority of home-based bleaching compositions or any particular method of application or concentration or application time or duration of use.Tooth sensitivity and oral irritation were the most common side effects which were more prevalent with higher concentrations of active agents though the effects were mild and transient. Tooth whitening did not have any effect on oral health-related quality of life.

    AUTHORS' CONCLUSIONS: We found low to very low-certainty evidence over short time periods to support the effectiveness of home-based chemically-induced bleaching methods compared to placebo for all the outcomes tested.We were unable to draw any conclusions regarding the superiority of home-based bleaching compositions or any particular method of application or concentration or application time or duration of use, as the overall evidence generated was of very low certainty. Well-planned RCTs need to be conducted by standardising methods of application, concentrations, application times, and duration of treatment.

    Matched MeSH terms: Hydrogen Peroxide/adverse effects
  5. Li H, Zhao L, Lau YS, Zhang C, Han R
    Oncogene, 2021 01;40(1):177-188.
    PMID: 33110234 DOI: 10.1038/s41388-020-01523-5
    Colorectal cancer is the third leading cause of cancer-related deaths in the United States and the third most common cancer in men and women. Around 20% colon cancer cases are closely linked with colitis. Both environmental and genetic factors are thought to contribute to colon inflammation and tumor development. However, the genetic factors regulating colitis and colon tumorigenesis remain elusive. Since reactive oxygen species (ROS) is vitally involved in tissue inflammation and tumorigenesis, here we employed a genome-wide CRISPR knockout screening approach to systemically identify the genetic factors involved in the regulation of oxidative stress. Next generation sequencing (NGS) showed that over 600 gRNAs including the ones targeting LGALS2 were highly enriched in cells survived after sublethal H2O2 challenge. LGALS2 encodes the glycan-binding protein Galectin 2 (Gal2), which is predominantly expressed in the gastrointestinal tract and downregulated in human colon tumors. To examine the role of Gal2 in colitis, we employed the dextran sodium sulfate (DSS)-induced acute colitis model in mice with (WT) or without Lgals2 (Gal2-KO) and showed that Gal2 deficiency ameliorated DSS-induced colitis. We further demonstrated that Gal2-KO mice developed significantly larger tumors than WT mice using Azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colorectal cancer model. We found that STAT3 phosphorylation was significantly increased in Gal2-deficient tumors as compared to those in WT mice. Gal2 overexpression decreased the proliferation of human colon tumor epithelial cells and blunted H2O2-induced STAT3 phosphorylation. Overall, our results demonstrate that Gal2 plays a suppressive role in colon tumor growth and highlights the therapeutic potential of Gal2 in colon cancer.
    Matched MeSH terms: Hydrogen Peroxide/adverse effects
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links