Displaying all 11 publications

Abstract:
Sort:
  1. Lee KW, Tey BT, Ho KL, Tan WS
    J Appl Microbiol, 2012 Jan;112(1):119-31.
    PMID: 21992228 DOI: 10.1111/j.1365-2672.2011.05176.x
    To display a liver-specific ligand on the hepatitis B virus core particles for cell-targeting delivery.
    Matched MeSH terms: Hepatitis B Core Antigens/genetics*
  2. Yap SF, Wong PW, Chen YC, Rosmawati M
    PMID: 12118437
    A retrospective study was carried out to determine the frequency of the pre-core stop codon mutant virus in a group of chronic hepatitis B carriers: 81 cases were considered [33 hepatits B e antigen (HBe) positive and 48 HBe negative]. All of the HBe positive cases had detectable viral DNA by hybridization analysis; in the case of the HBe negative cases, one third had detectable viral DNA by hybridization analysis and two thirds had HBV DNA detectable by polymerase chain reaction (PCR) amplification. Pre-core stop codon mutant detection was carried out on all specimens using allele-specific oligonucleotide hybridization following PCR amplification of the target sequence. The pre-core mutant was detected in 13/33 (39.4%) of HBe positive cases and in 32/48 (66.7%) of HBe negative cases. Sequence analysis was carried out on 8 of the 16 HBe negative specimens that did not carry the pre-core mutant virus to determine the molecular basis for the HBe minus phenotype in these cases: the 1762/1764 TA paired mutation in the second AT rich region of the core promoter was detected in five cases; a start codon mutation was detected in one case. The predominant mutation resulting in the HBe minus phenotype in our isolates was the 1896A pre-core ("pre-core stop codon") mutation; other mutations responsible for the phenotype included the core promoter paired mutation and pre-core start codon mutation. In view of the high frequency of the pre-core mutant virus, sequence analysis was performed to determine the virus genotype on the basis of the nucleotide sequence of codon 15. The sequences of 21 wild type virus (14 HBe positive and 7 HBe negative cases) were examined: 15 were found to be codon 15 CCT variants (71.4%); the frequency in the HBe positive group was 12/14 (85.7%), while that in the HBe negative group was 3/7 (42.9%). The high frequency of the codon 15 CCT variant in association with the frequent occurrence of the pre-core mutant in our isolates concurs with the results of other studies.
    Matched MeSH terms: Hepatitis B Core Antigens/genetics*
  3. Ho CW, Tan WS, Chong FC, Ling TC, Tey BT
    J Microbiol Biotechnol, 2009 Apr;19(4):416-23.
    PMID: 19421000
    Hepatitis B core antigen (HBcAg) is an important serological marker used in the diagnosis of hepatitis B virus (HBV) infections. In the current study, a fast and efficient preparative purification protocol for truncated HBcAg from Escherichia coli disruptate was developed. The recombinant HBcAg was first captured by anion exchange expanded bed adsorption chromatography integrated with a cell disruption process. This online capture process has shortened the process time and eliminated the "hold-up" period that may be detrimental to the quality of target protein. The eluted product from the expanded bed adsorption chromatography was subsequently purified using size-exclusion chromatography. The results showed that this novel purification protocol achieved a recovery yield of 45.1% with a product purity of 88.2%, which corresponds to a purification factor of 4.5. The recovered HBcAg is still biologically active as shown by ELISA test.
    Matched MeSH terms: Hepatitis B Core Antigens/genetics
  4. Lee MF, Chan ES, Tan WS, Tam KC, Tey BT
    J Chromatogr A, 2015 Oct 9;1415:161-5.
    PMID: 26358561 DOI: 10.1016/j.chroma.2015.08.056
    Poly(oligo(ethylene glycol) methacrylate) (POEGMA), an inert polymer was grafted onto an anion exchange adsorbent for the exclusion of relatively larger hepatitis B virus-like particles (HB-VLPs) from the anion exchange ligand (Q) and at the same time this process allowed the selective adsorption of smaller size Escherichia coli host cell proteins (HCPs). The chain lengths of the POEGMA grafted were modulated by varying the amount of monomers used in the polymer grafting. The purification factor and yield of the HB-VLPs obtained from the flow-through of negative chromatography were 2.3 and 66.0±3.1%, respectively, when shorter chain length of POEGMA (SQ) was grafted. Adsorbent grafted with longer chain of POEGMA (LQ) excluded some HCPs that are larger in size together with the HB-VLPs, reducing the purity of the recovered HB-VLPs. Further heat-treatment of the flow-through pool from SQ followed by centrifugation increased the purity of heat stable HB-VLPs to 87.5±1.1%. Heat-treatment of the flow through sample resulted in thermal denaturation and aggregation of HCPs, while the heat stable HB-VLPs still remained intact as observed under a transmission electron microscope. The performance of the negative chromatography together with heat treatment in the purification of HB-VLPs is far better than the reported bind-and-elute techniques.
    Matched MeSH terms: Hepatitis B Core Antigens/genetics
  5. Yap WB, Tey BT, Ng MY, Ong ST, Tan WS
    J Virol Methods, 2009 Sep;160(1-2):125-31.
    PMID: 19433111 DOI: 10.1016/j.jviromet.2009.04.038
    The core antigen of the hepatitis B virus (HBcAg) has been used widely as a diagnostic reagent for the identification of the viral infection. However, purification using the conventional sucrose density gradient ultracentrifugation is time consuming and costly. To overcome this, HBcAg particles displaying His-tag on their surface were constructed and produced in Escherichia coli. The recombinant His-tagged HBcAgs were purified using immobilized metal affinity chromatography. Transmission electron microscopy and enzyme-linked immunosorbent assay (ELISA) revealed that the displayed His-tag did not impair the formation of the core particles and the antigenicity of HBcAg.
    Matched MeSH terms: Hepatitis B Core Antigens/genetics
  6. Lee KW, Tan WS
    J Virol Methods, 2008 Aug;151(2):172-180.
    PMID: 18584885 DOI: 10.1016/j.jviromet.2008.05.025
    The recombinant hepatitis B virus (HBV) core antigen (HBcAg) expressed in Escherichia coli self-assembles into icosahedral capsids of about 35 nm which can be exploited as gene or drug delivery vehicles. The association and dissociation properties of the C-terminally truncated HBcAg with urea and guanidine hydrochloride (GdnHCl) were studied. Transmission electron microscopy (TEM) revealed that the dissociated HBcAg was able to re-associate into particles when the applied denaturing agents were physically removed. In order to evaluate the potential of the particles in capturing molecules, purified green fluorescent protein (GFP) was applied to the dissociated HBcAg for encapsidation. The HBcAg particles harbouring the GFP molecules were purified using sucrose density gradient ultracentrifugation and analysed using native agarose gel electrophoresis and TEM. A method for the encapsidation of GFP in HBcAg particles which has the potential to capture drugs or nucleic acids was established.
    Matched MeSH terms: Hepatitis B Core Antigens/genetics*
  7. Chook JB, Ngeow YF, Yap SF, Tan TC, Mohamed R
    J Med Virol, 2011 Apr;83(4):594-601.
    PMID: 21328372 DOI: 10.1002/jmv.22016
    Hepatitis B virus (HBV) and high liver iron deposits have both been associated with the development of cirrhosis. Among HBV factors, genotype and mutations in the basal core promoter (BCP) and precore regions have been most frequently studied but the evidence for a positive association with cirrhosis has been inconsistent. In this study, sera from persons with chronic HBV infection with and without cirrhosis were used for whole HBV genome analysis and for the estimation of serum iron marker (serum iron or ferritin) levels. Single codon analysis showed that the precore wild-type, TGG (nt 1,895-1,897), gave the highest accuracy (77.5%) for the identification of cirrhosis compared to other codons. When TGG was analyzed together with the precore start codon wild-type, ATG (nt 1,814-1,816), the accuracy was improved to 80.0% (odds ratio=35.29; 95% confidence interval=3.87-321.93; Phi=0.629; P<0.001). When the serum iron marker was included for analysis, it was clear that a combination of a precore wild-type and high serum iron marker gave a better accuracy (90.0%) (odds ratio=107.67; 95% confidence interval=10.21-1,135.59; Phi=0.804; P<0.001) for the identification of cirrhosis than either biomarker alone. It appeared that a combined use of both these biomarkers might help to predict the development of cirrhosis in a person with chronic HBV infection, but longitudinal studies are required to test this hypothesis.
    Matched MeSH terms: Hepatitis B Core Antigens/genetics*
  8. Yap WB, Tey BT, Alitheen NB, Tan WS
    J Chromatogr A, 2010 May 21;1217(21):3473-80.
    PMID: 20388569 DOI: 10.1016/j.chroma.2010.03.012
    Hepatitis B core antigen (HBcAg) is used as a diagnostic reagent for the detection of hepatitis B virus infection. In this study, immobilized metal affinity-expanded bed adsorption chromatography (IMA-EBAC) was employed to purify N-terminally His-tagged HBcAg from unclarified bacterial homogenate. Streamline Chelating was used as the adsorbent and the batch adsorption experiment showed that the optimal binding pH of His-tagged HBcAg was 8.0 with a binding capacity of 1.8 mg per ml of adsorbent. The optimal elution condition for the elution of His-tagged HBcAg from the adsorbent was at pH 7 in the presence of 500 mM imidazole and 1.5 M NaCl. The IMA-EBAC has successfully recovered 56% of His-tagged HBcAg from the unclarified E. coli homogenate with a purification factor of 3.64. Enzyme-linked immunosorbent assay (ELISA) showed that the antigenicity of the recovered His-tagged HBcAg was not affected throughout the IMA-EBAC purification process and electron microscopy revealed that the protein assembled into virus-like particles (VLP).
    Matched MeSH terms: Hepatitis B Core Antigens/genetics
  9. Tan GH, Yusoff K, Seow HF, Tan WS
    J Clin Virol, 2007 Jan;38(1):49-56.
    PMID: 17074533
    Phage display is an alternative method for constructing and selecting antibodies with desired specificity towards an antigen.
    Matched MeSH terms: Hepatitis B Core Antigens/genetics*
  10. Yoon KY, Tan WS, Tey BT, Lee KW, Ho KL
    Electrophoresis, 2013 Jan;34(2):244-53.
    PMID: 23161478 DOI: 10.1002/elps.201200257
    Hepatitis B core antigen (HBcAg) expressed in Escherichia coli is able to self-assemble into large and small capsids comprising 240 (triangulation number T = 4) and 180 (triangulation number T = 3) subunits, respectively. Conventionally, sucrose density gradient ultracentrifugation and SEC have been used to separate these capsids. However, good separation of the large and small particles with these methods is never achieved. In the present study, we employed a simple, fast, and cost-effective method to separate the T = 3 and T = 4 HBcAg capsids by using native agarose gel electrophoresis followed by an electroelution method (NAGE-EE). This is a direct, fast, and economic method for isolating the large and small HBcAg particles homogenously based on the hydrodynamic radius of the spherical particles. Dynamic light scattering analysis demonstrated that the T = 3 and T = 4 HBcAg capsids prepared using the NAGE-EE method are monodisperse with polydispersity values of ∼15% and ∼13%, respectively. ELISA proved that the antigenicity of the capsids was not affected in the purification process. Overall, NAGE-EE produced T = 3 and T = 4 capsids with a purity above 90%, and the recovery was 34% and 50%, respectively (total recovery of HBcAg is ∼84%), and the operation time is 15 and 4 times lesser than that of the sucrose density gradient ultracentrifugation and SEC, respectively.
    Matched MeSH terms: Hepatitis B Core Antigens/genetics
  11. Monjezi R, Tan SW, Tey BT, Sieo CC, Tan WS
    J Virol Methods, 2013 Jan;187(1):121-6.
    PMID: 23022731 DOI: 10.1016/j.jviromet.2012.09.017
    The core antigen (HBcAg) of hepatitis B virus (HBV) is one of the markers for the identification of the viral infection. The main purpose of this study was to develop a TaqMan real-time detection assay based on the concept of phage display mediated immuno-PCR (PD-IPCR) for the detection of HBcAg. PD-IPCR combines the advantages of immuno-PCR (IPCR) and phage display technology. IPCR integrates the versatility of enzyme-linked immunosorbent assay (ELISA) with the sensitivity and signal generation power of PCR. Whereas, phage display technology exploits the physical association between the displayed peptide and the encoding DNA within the same phage particle. In this study, a constrained peptide displayed on the surface of an M13 recombinant bacteriophage that interacts tightly with HBcAg was applied as a diagnostic reagent in IPCR. The phage displayed peptide and its encoding DNA can be used to replace monoclonal antibody (mAb) and chemically bound DNA, respectively. This method is able to detect as low as 10ng of HBcAg with 10(8)pfu/ml of the recombinant phage which is about 10,000 times more sensitive than the phage-ELISA. The PD-IPCR provides an alternative means for the detection of HBcAg in human serum samples.
    Matched MeSH terms: Hepatitis B Core Antigens/genetics
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links