In 1998, a novel paramyxovirus (order Mononegavirales, family Paramyxoviridae, subfamily Paramyxovirinae, genus Henipavirus) emerged in peninsular Malaysia causing fatal encephalitis in humans and severe respiratory illness with encephalitis in pigs. The virus was successfully isolated in cultured mammalian cells. Transmission electron microscopy of infected tissue culture cells played a crucial role in the early preliminary identification of the causative agent of the outbreak. This in turn was pivotal to determine the correct direction of control measures that subsequently brought the epidemic under control. In light of this investigation, and indeed identification of infectious agents associated with other disease episodes, electron microscopy will remain an important frontline method for rapid diagnostic virology and investigation of any future outbreak of new and unusual cases of illness suspected of an infectious aetiology.
Formalin-fixed, paraffin wax-embedded tissues of three Malaysian farm pigs naturally infected with Nipah virus were used to investigate the value of anti-Nipah virus mouse monoclonal antibodies (Mabs) and rabbit polyclonal antibody for immunohistochemical diagnosis. Mabs 11F6 and 12A5 gave intense immunolabelling in lung tissue that had been fixed in 10% neutral buffered formalin for about 4 years, whereas the reactivity of Mabs 13A5 and 18C4 and polyclonal antibody was reduced significantly by long-term formalin fixation. Immunohistochemical examination of Malaysian farm pig samples with Mab 11F6 confirmed the affinity of Nipah virus for respiratory epithelium, renal glomerular and tubular epithelium, meningeal arachnoidal cells, and systemic vascular endothelium and smooth muscle. In addition, Nipah virus antigens were identified in laryngeal epithelial cells, Schwann cells of peripheral nerve fascicles in the spleen, and endothelial cells in the atrioventricular valve. The study demonstrated the value of Mabs 11F6 and 12A5 for the immunohistochemical diagnosis of Nipah virus infection in pigs.
The genus Henipavirus within the family Paramyxoviridae includes the Hendra virus (HeV) and Nipah virus (NiV) which were discovered in the 1990s in Australia and Malaysia, respectively, after emerging to cause severe and often fatal outbreaks in humans and animals. While HeV is confined to Australia, more recent NiV outbreaks have been reported in Bangladesh, India and the Philippines. The clinical manifestations of both henipaviruses in humans appear similar, with a predominance of an acute encephalitic syndrome. Likewise, the pathological features are similar and characterized by disseminated, multi-organ vasculopathy comprising endothelial infection/ulceration, vasculitis, vasculitis-induced thrombosis/occlusion, parenchymal ischemia/microinfarction, and parenchymal cell infection in the central nervous system (CNS), lung, kidney and other major organs. This unique dual pathogenetic mechanism of vasculitis-induced microinfarction and neuronal infection causes severe tissue damage in the CNS. Both viruses can also cause relapsing encephalitis months and years after the acute infection. Many animal models studied to date have largely confirmed the pathology of henipavirus infection, and provided the means to test new therapeutic agents and vaccines. As the bat is the natural host of henipaviruses and has worldwide distribution, spillover events into human populations are expected to occur in the future.
The nucleocapsid (N) protein of Nipah virus (NiV) is a major constituent of the viral proteins which play a role in encapsidation, regulating the transcription and replication of the viral genome. To investigate the use of a fusion system to aid the purification of the recombinant N protein for structural studies and potential use as a diagnostic reagent, the NiV N gene was cloned into the pFastBacHT vector and the His-tagged fusion protein was expressed in Sf9 insect cells by recombinant baculovirus. Western blot analysis of the recombinant fusion protein with anti-NiV antibodies produced a band of approximately 62 kDa. A time course study showed that the highest level of expression was achieved after 3 days of incubation. Electron microscopic analysis of the NiV recombinant N fusion protein purified on a nickel-nitrilotriacetic acid resin column revealed different types of structures, including spherical, ring-like, and herringbone-like particles. The light-scattering measurements of the recombinant N protein also confirmed the polydispersity of the sample with hyrdrodynamic radii of small and large types. The optical density spectra of the purified recombinant fusion protein revealed a high A(260)/A(280) ratio, indicating the presence of nucleic acids. Western blotting and enzyme-linked immunosorbent assay results showed that the recombinant N protein exhibited the antigenic sites and conformation necessary for specific antigen-antibody recognition.
A novel indirect fluorescent antibody test (IFAT) for detection of IgM against Nipah virus (NiV) was developed using HeLa 229 cells expressing recombinant NiV nucleocapsid protein (NiV-N). The NiV IFAT was evaluated using three panels of sera: a) experimentally produced sera from NiV-N-immunized/pre-immunized macaques, b) post-infection human sera associated with a Nipah disease outbreak in the Philippines in 2014, and c) human sera from a non-exposed Malaysian population. Immunized macaque sera showed a characteristic granular staining pattern of the NiV-N expressed antigen in HeLa 229 cells, which was readily distinguished from negative-binding results of the pre-immunized macaque sera. The IgM antibody titers in sequential serum samples (n = 7) obtained from three Nipah patients correlated well with previously published results using conventional IgM capture ELISA and SNT serology. The 90 human serum samples from unexposed persons were unreactive by IFAT. The IFAT utilizing NiV-N-expressing HeLa 229 cells to detect IgM antibody in an early stage of NiV infection is an effective approach, which could be utilized readily in local laboratories to complement other capabilities in NiV-affected countries.
Hendra virus (HeV) and Nipah virus (NiV) are the causative agents of emerging transboundary animal disease in pigs and horses. They also cause fatal disease in humans. NiV has a case fatality rate of 40 - 100%. In the initial NiV outbreak in Malaysia in 1999, about 1.1 million pigs had to be culled. The economic impact was estimated to be approximately US$450 million. Worldwide, HeV has caused more than 60 deaths in horses with 7 human cases and 4 deaths. Since the initial outbreak, HeV spillovers from Pteropus bats to horses and humans continue. This article presents a brief review on the currently available diagnostic methods for henipavirus infections, including advances achieved since the initial outbreak, and a gap analysis of areas needing improvement.
Until the Nipah outbreak in Malaysia in 1999, knowledge of human infections with the henipaviruses was limited to the small number of cases associated with the emergence of Hendra virus in Australia in 1994. The Nipah outbreak in Malaysia alerted the global public health community to the severe pathogenic potential and widespread distribution of these unique paramyxoviruses. This chapter briefly describes the initial discovery of Nipah virus and the challenges encountered during the initial identification and characterisation of the aetiological agent responsible for the outbreak of febrile encephalitis. The initial attempts to isolate Nipah virus from the bat reservoir host are also described.
Nipah virus is an emerging zoonotic paramyxovirus that causes severe and often fatal respiratory and neurological disease in humans. The virus was first discovered after an outbreak of encephalitis in pig farmers in Malaysia and Singapore with subsequent outbreaks in Bangladesh or India occurring almost annually. Due to the highly pathogenic nature of NiV, its pandemic potential, and the lack of licensed vaccines or therapeutics, there is a requirement for research and development into highly sensitive and specific diagnostic tools as well as antivirals and vaccines to help prevent and control future outbreak situations.
The broad species tropism of Nipah virus (NiV) coupled with its high pathogenicity demand a rapid search for a new biomarker candidate for diagnosis. The matrix (M) protein was expressed in Escherichia coli and purified using a Ni-NTA affinity column chromatography and sucrose density gradient centrifugation. The recombinant M protein with the molecular mass (Mr) of about 43 kDa was detected by anti-NiV serum and anti-myc antibody. About 50% of the M protein was found to be soluble and localized in cytoplasm when the cells were grown at 30 degrees C. Electron microscopic analysis showed that the purified M protein assembled into spherical particles of different sizes with diameters ranging from 20 to 50 nm. The purified M protein showed significant reactivity with the swine sera collected during the NiV outbreak, demonstrating its potential as a diagnostic reagent.
The Nipah virus is a newly identified paramyxovirus responsible for an outbreak of fatal encephalitis in Malaysia and Singapore. This paper reports the follow up clinical and magnetic resonance imaging findings in 22 affected subjects. Of 13 patients with encephalitis, one died, one was lost to follow up, and seven recovered. Among the four remaining patients, one had residual sixth nerve palsy, another suffered from severe clinical depression, and a third patient had evidence of retinal artery occlusion. One patient with delayed onset Horner syndrome had a single lesion in the cervical spinal cord. The brain magnetic resonance findings were stable or improved in nine patients over 18 months of follow up. Among a second group of nine asymptomatic seropositive abattoir workers, magnetic resonance examination in seven subjects revealed discrete small lesions in the brain; similar to those detected in encephalitis patients. These findings suggest that in addition to encephalitis, the newly discovered Nipah virus affects the spinal cord and the retina. Late clinical and radiological findings can occur in Nipah virus infections as with other paramyxoviruses.
The emergence of Hendra and Nipah viruses in the 1990s has been followed by the further emergence of these viruses in the tropical Old World. The history and current knowledge of the disease, the viruses and their epidemiology is reviewed in this article. A historical aside summarizes the role that Dr. Brian W.J. Mahy played at critical junctures in the early stories of these viruses.
The glycoprotein (G) of Nipah virus (NiV) is important for virus infectivity and induction of the protective immunity. In this study, the extra-cellular domain of NiV G protein was fused with hexahistidine residues at its N-terminal end and expressed in Escherichia coli. The expression under transcriptional regulation of T7 promoter yielded insoluble protein aggregates in the form of inclusion bodies. The inclusion bodies were solubilized with 8 M urea and the protein was purified to homogeneity under denaturing conditions using nickel-nitrilotriacetic acid (Ni-NTA) affinity chromatography. The denatured protein was renatured by gradual removal of the urea. Light scattering analysis of the purified protein showed primarily monodispersity. The purified protein showed significant reactivity with the antibodies present in the sera of NiV-infected swine, as demonstrated in Western blot analysis and enzyme-linked immunosorbent assay (ELISA). Taken together, the data indicate the potential usefulness of the purified G protein for structural or functional studies and the development of immunoassay for detection of the NiV antibodies.