Displaying all 4 publications

Abstract:
Sort:
  1. Ivanova K, Zehtindjiev P, Mariaux J, Georgiev BB
    Infect Genet Evol, 2015 Apr;31:33-9.
    PMID: 25577987 DOI: 10.1016/j.meegid.2015.01.004
    The knowledge of the diversity of haemosporidian parasites is of primary importance as their representatives include agents of bird malaria. We investigated the occurrence of Haemoproteus spp. and Plasmodium spp. in bird populations from a single locality in the State of Selangor, Peninsular Malaysia, and report on the parasite prevalence of the two genera. A combination of methods (molecular and morphological) was used for detecting these parasites. Seventy-nine bird individuals were caught using mist-nets in July and August 2010 at Gombak Field Station of the University of Malaya, Kuala Lumpur. In total, 23 birds were identified as positive for Haemoproteus or Plasmodium infection and one individual was recognized as carrying mixed infection. The total prevalence of haemosporidians in the collected samples was 30.3%. Infections with parasites of the genus Haemoproteus were predominant compared to those of the genus Plasmodium. In total, 10 new cyt b lineages of Haemoproteus spp. and 3 new cyt b lineages of Plasmodium spp. were recorded in this study. From all recorded haemosporidian lineages (16 in total), 3 were known from previous studies - hCOLL2, hYWT2 and pNILSUN1. Two of them are linked with their corresponding morphospecies - Haemoproteus pallidus (COLL2) and Haemoproteus motacillae (YWT2). The morphological analysis in the present study confirmed the results obtained by the PCR method relative to prevalence, with 25.3% total prevalence of Haemoproteus and Plasmodium parasites. The intensities of infection varied between 0.01% and 19%. Most infections were light, with intensities below 0.1%. The present study is the first molecular survey of the protozoan blood parasites of the order Haemosporida recorded in Malaysia.
    Matched MeSH terms: Haemosporida/genetics*
  2. Win SY, Chel HM, Hmoon MM, Htun LL, Bawm S, Win MM, et al.
    Acta Trop, 2020 Dec;212:105719.
    PMID: 32976841 DOI: 10.1016/j.actatropica.2020.105719
    Village chicken production, a traditional, small-scale, and extensive backyard poultry industry, has been profitable for local farmers in Myanmar. However, there is scanty information available concerning the infection of these chickens with avian pathogens, including haemoprotozoan parasites. In the present study, we provide the first report of microscopic detection and molecular identification of Leucocytozoon and Plasmodium parasites from seven different areas of Myanmar. Leucocytozoon gametocytes were detected in 17.6% (81/461) of the blood smears from village chickens. The nested polymerase chain reaction (PCR) for targeting Leucocytozoon mitochondrial cytochrome b (cyt b) genes had a 17.6% positive rate. Although the positive rate of nested PCR targeting Plasmodium/Haemoproteus cyt b was 34.3%, the PCR protocol was observed to possibly amplify DNA of a certain species of Leucocytozoon. There were no obvious clinical signs in the infected birds. Statistical analysis of the microscopic detection and PCR detection rates using the age and sex of birds as internal factors revealed that the statistical significances differed according to the study area. The sequencing of 32 PCR products obtained from each study area revealed infection by Leucocytozoon caulleryi in three birds, Leucocytozoon sabrazesi in two birds, Leucocytozoon schoutedeni in two birds, Leucocytozoon sp. in eighteen birds, and Plasmodium juxtanucleare in seven birds; however, Haemoproteus infection was not detected. While L. sabrazesi was detected in chickens from the central region of Myanmar, the other haemosporidians were detected in those from different areas. In the haplotype analysis, we detected 17 haemosporidian cyt b haplotypes, including two for L. caulleryi, one for L. sabrazesi, two for L. schoutedeni, nine for Leucocytozoon sp., and three for P. juxtanucleare. Phylogenetic analysis of the cyt b haplotypes revealed a considerably close genetic relationship among chicken haemosporidians detected in Myanmar, Thailand, and Malaysia. These results indicate that well-recognized widespread species of chicken Leucocytozoon and Plasmodium are distributed nationwide in Myanmar, providing new insights into the ecosystem and control strategies of haemosporidian parasites in domesticated chickens in Myanmar.
    Matched MeSH terms: Haemosporida/genetics
  3. Olival KJ, Stiner EO, Perkins SL
    J Parasitol, 2007 Dec;93(6):1538-40.
    PMID: 18314711 DOI: 10.1645/GE-1208.1
    Three species of flying fox (Pteropus hypomelanus, P. vampyrus, and P. lylei) from Malaysia and Vietnam were screened for apicomplexan parasites by thin blood smears and polymerase chain reaction. Only 1 of 16 bats sampled from 3 localities in southeast Asia was found to be infected (P. hypomelanus from Pulau Pangkor, Malaysia). We observed micro- and macrogametocytes, with morphology consistent with Hepatocystis sp. parasites, using light microscopy. Phylogenetic analysis of the cytochrome b gene showed that the parasite from P. hypomelanus groups with 2 published sequences from Hepatocystis spp., including one from Cynopterus brachyotis, another fruit bat in the Pteropodidae.
    Matched MeSH terms: Haemosporida/genetics
  4. Masello JF, Martínez J, Calderón L, Wink M, Quillfeldt P, Sanz V, et al.
    Parasit Vectors, 2018 Jun 19;11(1):357.
    PMID: 29921331 DOI: 10.1186/s13071-018-2940-3
    BACKGROUND: Parasites can exert selection pressure on their hosts through effects on survival, on reproductive success, on sexually selected ornament, with important ecological and evolutionary consequences, such as changes in population viability. Consequently, hemoparasites have become the focus of recent avian studies. Infection varies significantly among taxa. Various factors might explain the differences in infection among taxa, including habitat, climate, host density, the presence of vectors, life history and immune defence. Feeding behaviour can also be relevant both through increased exposure to vectors and consumption of secondary metabolites with preventative or therapeutic effects that can reduce parasite load. However, the latter has been little investigated. Psittaciformes (parrots and cockatoos) are a good model to investigate these topics, as they are known to use biological control against ectoparasites and to feed on toxic food. We investigated the presence of avian malaria parasites (Plasmodium), intracellular haemosporidians (Haemoproteus, Leucocytozoon), unicellular flagellate protozoans (Trypanosoma) and microfilariae in 19 Psittaciformes species from a range of habitats in the Indo-Malayan, Australasian and Neotropical regions. We gathered additional data on hemoparasites in wild Psittaciformes from the literature. We considered factors that may control the presence of hemoparasites in the Psittaciformes, compiling information on diet, habitat, and climate. Furthermore, we investigated the role of diet in providing antiparasitic secondary metabolites that could be used as self-medication to reduce parasite load.

    RESULTS: We found hemoparasites in only two of 19 species sampled. Among them, all species that consume at least one food item known for its secondary metabolites with antimalarial, trypanocidal or general antiparasitic properties, were free from hemoparasites. In contrast, the infected parrots do not consume food items with antimalarial or even general antiparasitic properties. We found that the two infected species in this study consumed omnivorous diets. When we combined our data with data from studies previously investigating blood parasites in wild parrots, the positive relationship between omnivorous diets and hemoparasite infestation was confirmed. Individuals from open habitats were less infected than those from forests.

    CONCLUSIONS: The consumption of food items known for their secondary metabolites with antimalarial, trypanocidal or general antiparasitic properties, as well as the higher proportion of infected species among omnivorous parrots, could explain the low prevalence of hemoparasites reported in many vertebrates.

    Matched MeSH terms: Haemosporida/genetics
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links