Displaying all 4 publications

Abstract:
Sort:
  1. Ng PK, Lin SM, Lim PE, Hurtado AQ, Phang SM, Yow YY, et al.
    PLoS One, 2017;12(7):e0182176.
    PMID: 28759629 DOI: 10.1371/journal.pone.0182176
    Many studies classifying Gracilaria species for the exploitation of agarophytes and the development of the agar industry were conducted before the prevalence of molecular tools, resulting in the description of many species based solely on their morphology. Gracilaria firma and G. changii are among the commercially important agarophytes from the western Pacific; both feature branches with basal constrictions that taper toward acute apices. In this study, we contrasted the morpho-anatomical circumscriptions of the two traditionally described species with molecular data from samples that included representatives of G. changii collected from its type locality. Concerted molecular analyses using the rbcL and cox1 gene sequences, coupled with morphological observations of the collections from the western Pacific, revealed no inherent differences to support the treatment of the two entities as distinct taxa. We propose merging G. changii (a later synonym) into G. firma and recognize G. firma based on thallus branches with abrupt basal constrictions that gradually taper toward acute (or sometimes broken) apices, cystocarps consisting of small gonimoblast cells and inconspicuous multinucleate tubular nutritive cells issuing from gonimoblasts extending into the inner pericarp at the cystocarp floor, as well as deep spermatangial conceptacles of the verrucosa-type. The validation of specimens under different names as a single genetic species is useful to allow communication and knowledge transfer among groups from different fields. This study also revealed considerably low number of haplotypes and nucleotide diversity with apparent phylogeographic patterns for G. firma in the region. Populations from the Philippines and Taiwan were divergent from each other as well as from the populations from Malaysia, Thailand, Singapore and Vietnam. Establishment of baseline data on the genetic diversity of this commercially important agarophyte is relevant in the context of cultivation, as limited genetic diversity may jeopardize the potential for its genetic improvement over time.
    Matched MeSH terms: Gracilaria/classification
  2. Ho CL, Lee WK, Lim EL
    Genomics, 2018 03;110(2):124-133.
    PMID: 28890206 DOI: 10.1016/j.ygeno.2017.09.003
    Agar and agarose have wide applications in food and pharmaceutical industries. Knowledge on the genome of red seaweeds that produce them is still lacking. To fill the gap in genome analyses of these red algae, we have sequenced the nuclear and organellar genomes of an agarophyte, Gracilaria changii. The partial nuclear genome sequence of G. changii has a total length of 35.8Mb with 10,912 predicted protein coding sequences. Only 39.4% predicted proteins were found to have significant matches to protein sequences in SwissProt. The chloroplast genome of G. changii is 183,855bp with a total of 201 open reading frames (ORFs), 29 tRNAs and 3 rRNAs predicted. Five genes: ssrA, leuC and leuD CP76_p173 (orf139) and pbsA were absent in the chloroplast genome of G. changii. The genome information is valuable in accelerating functional studies of individual genes and resolving evolutionary relationship of red seaweeds.
    Matched MeSH terms: Gracilaria/classification
  3. Ng PK, Lin SM, Lim PE, Liu LC, Chen CM, Pai TW
    BMC Genomics, 2017 Jan 06;18(1):40.
    PMID: 28061748 DOI: 10.1186/s12864-016-3453-0
    BACKGROUND: The chloroplast genome of Gracilaria firma was sequenced in view of its role as an economically important marine crop with wide industrial applications. To date, there are only 15 chloroplast genomes published for the Florideophyceae. Apart from presenting the complete chloroplast genome of G. firma, this study also assessed the utility of genome-scale data to address the phylogenetic relationships within the subclass Rhodymeniophycidae. The synteny and genome structure of the chloroplast genomes across the taxa of Eurhodophytina was also examined.

    RESULTS: The chloroplast genome of Gracilaria firma maps as a circular molecule of 187,001 bp and contains 252 genes, which are distributed on both strands and consist of 35 RNA genes (3 rRNAs, 30 tRNAs, tmRNA and a ribonuclease P RNA component) and 217 protein-coding genes, including the unidentified open reading frames. The chloroplast genome of G. firma is by far the largest reported for Gracilariaceae, featuring a unique intergenic region of about 7000 bp with discontinuous vestiges of red algal plasmid DNA sequences interspersed between the nblA and cpeB genes. This chloroplast genome shows similar gene content and order to other Florideophycean taxa. Phylogenomic analyses based on the concatenated amino acid sequences of 146 protein-coding genes confirmed the monophyly of the classes Bangiophyceae and Florideophyceae with full nodal support. Relationships within the subclass Rhodymeniophycidae in Florideophyceae received moderate to strong nodal support, and the monotypic family of Gracilariales were resolved with maximum support.

    CONCLUSIONS: Chloroplast genomes hold substantial information that can be tapped for resolving the phylogenetic relationships of difficult regions in the Rhodymeniophycidae, which are perceived to have experienced rapid radiation and thus received low nodal support, as exemplified in this study. The present study shows that chloroplast genome of G. firma could serve as a key link to the full resolution of Gracilaria sensu lato complex and recognition of Hydropuntia as a genus distinct from Gracilaria sensu stricto.

    Matched MeSH terms: Gracilaria/classification
  4. Song SL, Lim PE, Phang SM, Lee WW, Hong DD, Prathep A
    BMC Res Notes, 2014;7:77.
    PMID: 24490797 DOI: 10.1186/1756-0500-7-77
    Gracilaria tenuistipitata is an agarophyte with substantial economic potential because of its high growth rate and tolerance to a wide range of environment factors. This red seaweed is intensively cultured in China for the production of agar and fodder for abalone. Microsatellite markers were developed from the chloroplast genome of G. tenuistipitata var. liui to differentiate G. tenuistipitata obtained from six different localities: four from Peninsular Malaysia, one from Thailand and one from Vietnam. Eighty G. tenuistipitata specimens were analyzed using eight simple sequence repeat (SSR) primer-pairs that we developed for polymerase chain reaction (PCR) amplification.
    Matched MeSH terms: Gracilaria/classification
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links