Displaying publications 1 - 20 of 36 in total

Abstract:
Sort:
  1. Taha M, Rahim F, Zaman K, Selvaraj M, Uddin N, Farooq RK, et al.
    Bioorg Chem, 2020 01;95:103555.
    PMID: 31911306 DOI: 10.1016/j.bioorg.2019.103555
    A series of twenty-six analogs of benzimidazole based oxadiazole have been synthesized and evaluated against alpha-glycosidase enzyme. Most the analogs showed excellent to good inhibitory potential. Among the screened analogs, analog 1, 2, 3 and 14 with IC50 values 4.6 ± 0.1, 9.50 ± 0.3, 2.6 ± 0.1 and 9.30 ± 0.4 µM respectively showedexcellent inhibitory potential than reference drug acarbose (IC50 = 38.45 ± 0.80 µM). Some of the analogs like 19, 21, 22 and 23 with methyl and methoxy substituent on phenyl ring show hydrophobic interaction and were found with no inhibitory potential. The binding interactions between synthesized analogs and ligands protein were confirmed through molecular docking study. Various spectroscopic techniques like 1H NMR, 13C NMR, and EI-MS were used for characterization of all synthesized analogs. These derivatives were synthesized by simple mode of synthesis like heterocyclic ring formation.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/chemical synthesis*
  2. Zawawi NK, Taha M, Ahmat N, Wadood A, Ismail NH, Rahim F, et al.
    Bioorg Chem, 2016 Feb;64:29-36.
    PMID: 26637946 DOI: 10.1016/j.bioorg.2015.11.006
    Newly synthesized benzimidazole hydrazone derivatives 1-26 were evaluated for their α-glucosidase inhibitory activity. Compounds 1-26 exhibited varying degrees of yeast α-glucosidase inhibitory activity with IC50 values between 8.40 ± 0.76 and 179.71 ± 1.11 μM when compared with standard acarbose. In this assay, seven compounds that showed highest inhibitory effects than the rest of benzimidazole series were identified. All the synthesized compounds were characterized by different spectroscopic methods adequately. We further evaluated the interaction of the active compounds with enzyme with the help of docking studies.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/chemical synthesis
  3. Taha M, Ismail NH, Lalani S, Fatmi MQ, Atia-Tul-Wahab, Siddiqui S, et al.
    Eur J Med Chem, 2015 Mar 6;92:387-400.
    PMID: 25585009 DOI: 10.1016/j.ejmech.2015.01.009
    In an effort to design and synthesize a new class of α-glucosidase inhibitor, we synthesized benzothiazole hybrid having benzohydrazide moiety (5). Compound 5 was reacted with various substituted aryl aldehyde to generate a small library of compounds 6-35. Synthesis of compounds was confirmed by the spectral information. These compounds were screened for their α-glucosidase activity. They showed a varying degree of α-glucosidase inhibition with IC50 values ranging between 5.31 and 53.34 μM. Compounds 6, 7, 9-16, 19, 21-30, 32-35 showed superior activity as compared to standard acarbose (IC50 = 906 ± 6.3 μM). This has identified a new class of α-glucosidase inhibitors. The predicted physico-chemical properties indicated the drug appropriateness for most of these compounds, as they obey Lipinski's rule of five (RO5). A hybrid B3LYP density functional theory (DFT) was employed for energy, minimization of 3D structures for all synthetic compounds using 6-311 + G(d,p) basis sets followed by molecular docking to explore their interactions with human intestinal C- and N-terminal domains of α-glucosidase. All compounds bind to the prospective allosteric site of the C- terminal domain, and consequently, may be considered as mixed inhibitors. It was hypothesized that both the dipole moment and H-bond interactions govern the biological activation of these compounds.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/chemical synthesis*
  4. Rahim F, Ullah K, Ullah H, Wadood A, Taha M, Ur Rehman A, et al.
    Bioorg Chem, 2015 Feb;58:81-7.
    PMID: 25528720 DOI: 10.1016/j.bioorg.2014.12.001
    A new series of triazinoindole analogs 1-11 were synthesized, characterized by EI-MS and (1)H NMR, evaluated for α-glucosidase inhibitory potential. All eleven (11) analogs showed different range of α-glucosidase inhibitory potential with IC50 value ranging between 2.46±0.008 and 312.79±0.06 μM when compared with the standard acarbose (IC50, 38.25±0.12 μM). Among the series, compounds 1, 3, 4, 5, 7, 8, and 11 showed excellent inhibitory potential with IC50 values 2.46±0.008, 37.78±0.05, 28.91±0.0, 38.12±0.04, 37.43±0.03, 36.89±0.06 and 37.11±0.05 μM respectively. All other compounds also showed good enzyme inhibition. The binding modes of these analogs were confirmed through molecular docking.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/chemical synthesis
  5. Khan KM, Rahim F, Wadood A, Kosar N, Taha M, Lalani S, et al.
    Eur J Med Chem, 2014 Jun 23;81:245-52.
    PMID: 24844449 DOI: 10.1016/j.ejmech.2014.05.010
    In our effort directed toward the discovery of new anti-diabetic agent for the treatment of diabetes, a library of biscoumarin derivative 1-18 was synthesized and evaluated for α-glucosidase inhibitory potential. All eighteen (18) compounds displayed assorted α-glucosidase activity with IC50 values 16.5-385.9 μM, if compared with the standard acarbose (IC50 = 906 ± 6.387 μM). In addition, molecular docking studies were carried out to explore the binding interactions of biscoumarin derivatives with the enzyme. This study has identified a new class of potent α-glucosidase inhibitors.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/chemical synthesis
  6. Taha M, Ismail NH, Imran S, Rokei MQB, Saad SM, Khan KM
    Bioorg Med Chem, 2015 Aug 01;23(15):4155-4162.
    PMID: 26183542 DOI: 10.1016/j.bmc.2015.06.060
    Oxadiazole derivatives (6-28) having hydrazone linkage, were synthesized through condensation reaction between benzohydrazide 5 with various benzaldehydes. The oxadiazoles derivatives (6-28) were evaluated for their α-glucosidase inhibitory activity. The IC50 values for inhibition activity vary in the range between 2.64 ± 0.05 and 460.14 ± 3.25 μM. The IC50 values were being compared to the standard acarbose (IC50=856.45 ± 5.60 μM) and it was found that compounds 6-9, 12, 13, 16, 18, 20, 22-28 were found to be more active than acarbose, while other compounds showed no activity. Structure-activity relationship (SAR) studies suggest that oxadiazole benzohydrazones (6-28) inhibitory potential is dependent on substitution of the N-benzylidene part. Compound 18 (IC50=2.64 ± 0.05 μM), which has trihydroxy substitution at C-2', C-4', and C-5' on N-benzylidene moiety, recorded the highest inhibition activity that is three-hundred times more active than the standard drug, acarbose (IC50=856.45 ± 5.60 μM). Compound 23 (IC50=34.64 ± 0.35 μM) was found to be the most active among compounds having single hydroxyl substitution. Shifting hydroxyl from C-2' to C-4' (6) and C-3' (7) reduces inhibitory activity significantly. Compounds with chlorine substituent (compounds 16, 28, and 27) showed potent activities but lower as compared to hydroxyl analogs. Substituent like nitro or methyl groups at any position suppresses enzyme inhibition activity. This reveals the important presence of hydroxyl and halo groups to have enzyme inhibitory potential.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/chemical synthesis*
  7. Leong SW, Abas F, Lam KW, Yusoff K
    Bioorg Med Chem Lett, 2018 02 01;28(3):302-309.
    PMID: 29292226 DOI: 10.1016/j.bmcl.2017.12.048
    A series of thirty-four diarylpentanoids derivatives were synthesized and evaluated for their α-glucosidase inhibitory activity. Eleven compounds (19, 20, 21, 24, 27, 28, 29, 31, 32, 33 and 34) were found to significantly inhibit α-glucosidase in which compounds 28, 31 and 32 demonstrated the highest activity with IC50 values ranging from 14.1 to 15.1 µM. Structure-activity comparison shows that multiple hydroxy groups are essential for α-glucosidase inhibitory activity. Meanwhile, 3,4-dihydroxyphenyl and furanyl moieties were found to be crucial in improving α-glucosidase inhibition. Molecular docking analyses further confirmed the critical role of both 3,4-dihydroxyphenyl and furanyl moieties as they bound to α-glucosidase active site in different mode. Overall result suggests that diarylpentanoids with both five membered heterocyclic ring and polyhydroxyphenyl moiety could be a new lead design in the search of novel α-glucosidase inhibitor.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/chemical synthesis
  8. Noreen T, Taha M, Imran S, Chigurupati S, Rahim F, Selvaraj M, et al.
    Bioorg Chem, 2017 06;72:248-255.
    PMID: 28482265 DOI: 10.1016/j.bioorg.2017.04.010
    Twenty five derivatives of indole carbohydrazide (1-25) had been synthesized. These compounds were characterized using 1H NMR and EI-MS, and further evaluated for their α-amylase inhibitory potential. The analogs (1-25) showed varying degree of α-amylase inhibitory potential. ranging between 9.28 and 599.0µM when compared with standard acarbose having IC50 value 8.78±0.16µM. Six analogs, 25 (IC50=9.28±0.153µM), 22 (IC50=9.79±0.43µM), 4 (IC50=11.08±0.357µM), 1 (IC50=12.65±0.169µM), 8 (IC50=21.37±0.07µM) and 14 (IC50=43.21±0.14µM) showed potent α-amylase inhibition as compared to the standard acarbose (IC50=8.78±0.16µM). All other analogs displayed good to moderate inhibitory potential. Structure-activity relationship was established through the interaction of the active compounds with enzyme active site with the help of docking studies.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/chemical synthesis
  9. Al-Salahi R, Ahmad R, Anouar E, Iwana Nor Azman NI, Marzouk M, Abuelizz HA
    Future Med Chem, 2018 08 01;10(16):1889-1905.
    PMID: 29882426 DOI: 10.4155/fmc-2018-0141
    AIM: Using a simple modification on a previously reported synthetic route, 3-benzyl(phenethyl)-2-thioxobenzo[g]quinazolin-4(3H)-ones (1 and 2) were synthesized with high yields. Further transformation of 1 and 2 produced derivatives 3-26, which were structurally characterized based on NMR and MS data, and their in vitro α-glucosidase inhibitory activity was evaluated using Baker's yeast α-glucosidase enzyme.

    RESULTS: Compounds 2, 4, 8, 12 and 20 exhibited the highest activity (IC50 = 69.20, 59.60, 49.40, 50.20 and 83.20 μM, respectively) compared with the standard acarbose (IC50 = 143.54 μM).

    CONCLUSION: A new class of potent α-glucosidase inhibitors was identified, and the molecular docking predicted plausible binding interaction of the targets in the binding pocket of α-glucosidase and rationalized the structure-activity relationship (SARs) of the target compounds.

    Matched MeSH terms: Glycoside Hydrolase Inhibitors/chemical synthesis*
  10. Javid MT, Rahim F, Taha M, Rehman HU, Nawaz M, Wadood A, et al.
    Bioorg Chem, 2018 08;78:201-209.
    PMID: 29597114 DOI: 10.1016/j.bioorg.2018.03.022
    α-Glucosidase is a catabolic enzyme that regulates the body's plasma glucose levels by providing energy sources to maintain healthy functioning. 2-Amino-thiadiazole (1-13) and 2-amino-thiadiazole based Schiff bases (14-22) were synthesized, characterized by 1H NMR and HREI-MS and screened for α-glucosidase inhibitory activity. All twenty-two (22) analogs exhibit varied degree of α-glucosidase inhibitory potential with IC50 values ranging between 2.30 ± 0.1 to 38.30 ± 0.7 μM, when compare with standard drug acarbose having IC50 value of 39.60 ± 0.70 μM. Among the series eight derivatives 1, 2, 6, 7, 14, 17, 19 and 20 showed outstanding α-glucosidase inhibitory potential with IC50 values of 3.30 ± 0.1, 5.80 ± 0.2, 2.30 ± 0.1, 2.70 ± 0.1, 2.30 ± 0.1, 5.50 ± 0.1, 4.70 ± 0.2, and 5.50 ± 0.2 μM respectively, which is many fold better than the standard drug acarbose. The remaining analogs showed good to excellent α-glucosidase inhibition. Structure activity relationship has been established for all compounds. The binding interactions of these compounds were confirmed through molecular docking.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/chemical synthesis
  11. Taha M, Ismail NH, Imran S, Wadood A, Rahim F, Saad SM, et al.
    Bioorg Chem, 2016 Jun;66:117-23.
    PMID: 27149363 DOI: 10.1016/j.bioorg.2016.04.006
    Twenty derivatives of 5-aryl-2-(6'-nitrobenzofuran-2'-yl)-1,3,4-oxadiazoles (1-20) were synthesized and evaluated for their α-glucosidase inhibitory activities. Compounds containing hydroxyl and halogens (1-6, and 8-18) were found to be five to seventy folds more active with IC50 values in the range of 12.75±0.10-162.05±1.65μM, in comparison with the standard drug, acarbose (IC50=856.45±5.60μM). Current study explores the α-glucosidase inhibition of a hybrid class of compounds of oxadiazole and benzofurans. These findings may invite researchers to work in the area of treatment of hyperglycemia. Docking studies showed that most compounds are interacting with important amino acids Glu 276, Asp 214 and Phe 177 through hydrogen bonds and arene-arene interaction.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/chemical synthesis
  12. Rahim F, Ullah H, Javid MT, Wadood A, Taha M, Ashraf M, et al.
    Bioorg Chem, 2015 Oct;62:15-21.
    PMID: 26162519 DOI: 10.1016/j.bioorg.2015.06.006
    A series of thiazole derivatives 1-21 were prepared, characterized by EI-MS and (1)H NMR and evaluated for α-glucosidase inhibitory potential. All twenty one derivatives showed good α-glucosidase inhibitory activity with IC50 value ranging between 18.23±0.03 and 424.41±0.94μM when compared with the standard acarbose (IC50, 38.25±0.12μM). Compound (8) (IC50, 18.23±0.03μM) and compound (7) (IC50=36.75±0.05μM) exhibited outstanding inhibitory potential much better than the standard acarbose (IC50, 38.25±0.12μM). All other analogs also showed good to moderate enzyme inhibition. Molecular docking studies were carried out in order to find the binding affinity of thiazole derivatives with enzyme. Studies showed these thiazole analogs as a new class of α-glucosidase inhibitors.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/chemical synthesis*
  13. Rahim F, Tariq S, Taha M, Ullah H, Zaman K, Uddin I, et al.
    Bioorg Chem, 2019 11;92:103284.
    PMID: 31546207 DOI: 10.1016/j.bioorg.2019.103284
    New triazinoindole bearing thiazole/oxazole analogues (1-21) were synthesized and characterized through spectroscopic techniques such as HREI-MS, 1H and 13C NMR. The configuration of compound 2i and 2k was confirmed through NOESY. All analogues were evaluated against α-amylase inhibitory potential. Among the synthesized analogues, compound 1h, 1i, 1j, 2a and 2f having IC50 values 1.80 ± 0.20, 1.90 ± 0.30, 1.2 ± 0.30, 1.2 ± 0.01 and 1.30 ± 0.20 μM respectively, showed excellent α-amylase inhibitory potential when compared with acarbose as standard (IC50 = 0.91 ± 0.20 µM). All other analogues showed good to moderate inhibitory potential. Structural activity relationship (SAR) has been established and binding interactions were confirmed through docking studies.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/chemical synthesis
  14. Iftikhar M, Shahnawaz, Saleem M, Riaz N, Aziz-Ur-Rehman, Ahmed I, et al.
    Arch Pharm (Weinheim), 2019 Dec;352(12):e1900095.
    PMID: 31544284 DOI: 10.1002/ardp.201900095
    A series of new N-aryl/aralkyl derivatives of 2-methyl-2-{5-(4-chlorophenyl)-1,3,4-oxadiazole-2ylthiol}acetamide were synthesized by successive conversions of 4-chlorobenzoic acid (a) into ethyl 4-chlorobenzoate (1), 4-chlorobenzoylhydrazide (2) and 5-(4-chlorophenyl)-1,3,4-oxadiazole-2-thiol (3), respectively. The required array of compounds (6a-n) was obtained by the reaction of 1,3,4-oxadiazole (3) with various electrophiles (5a-n) in the presence of DMF (N,N-dimethylformamide) and sodium hydroxide at room temperature. The structural determination of these compounds was done by infrared, 1 H-NMR (nuclear magnetic resonance), 13 C-NMR, electron ionization mass spectrometry, and high-resolution electron ionization mass spectrometry analyses. All compounds were evaluated for their α-glucosidase inhibitory potential. Compounds 6a, 6c-e, 6g, and 6i were found to be promising inhibitors of α-glucosidase with IC50 values of 81.72 ± 1.18, 52.73 ± 1.16, 62.62 ± 1.15, 56.34 ± 1.17, 86.35 ± 1.17, 52.63 ± 1.16 µM, respectively. Molecular modeling and ADME (absorption, distribution, metabolism, excretion) predictions supported the findings. The current synthesized library of compounds was achieved by utilizing very common raw materials in such a way that the synthesized compounds may prove to be promising drug leads.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/chemical synthesis*
  15. Abdullah MA, Lee YR, Mastuki SN, Leong SW, Wan Ibrahim WN, Mohammad Latif MA, et al.
    Bioorg Chem, 2020 11;104:104277.
    PMID: 32971414 DOI: 10.1016/j.bioorg.2020.104277
    A series of aminated- (1-9) and sulfonamide-containing diarylpentadienones (10-18) were synthesized, structurally characterized, and evaluated for their in vitro anti-diabetic potential on α-glucosidase and DPP-4 enzymes. It was found that all the new molecules were non-associated PAINS compounds. The sulfonamide-containing series (compounds 10-18) selectively inhibited α-glucosidase over DPP-4, in which compound 18 demonstrated the highest activity with an IC50 value of 5.69 ± 0.5 µM through a competitive inhibition mechanism. Structure-activity relationship (SAR) studies concluded that the introduction of the trifluoromethylbenzene sulfonamide moiety was essential for the suppression of α-glucosidase. The most active compound 18, was then further tested for in vivo toxicities using the zebrafish animal model, with no toxic effects detected in the normal embryonic development, blood vessel formation, and apoptosis of zebrafish. Docking simulation studies were also carried out to better understand the binding interactions of compound 18 towards the homology modeled α -glucosidase and the human lysosomal α -glucosidase enzymes. The overall results suggest that the new sulfonamide-containing diarylpentadienones, compound 18, could be a promising candidate in the search for a new α-glucosidase inhibitor, and can serve as a basis for further studies involving hit-to-lead optimization, in vivo efficacy and safety assessment in an animal model and mechanism of action for the treatment of T2DM patients.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/chemical synthesis
  16. Yeye EO, Kanwal, Mohammed Khan K, Chigurupati S, Wadood A, Ur Rehman A, et al.
    Bioorg Med Chem, 2020 06 01;28(11):115467.
    PMID: 32327353 DOI: 10.1016/j.bmc.2020.115467
    Thirty-three 4-amino-1,2,4-triazole derivatives 1-33 were synthesized by reacting 4-amino-1,2,4-triazole with a variety of benzaldehydes. The synthetic molecules were characterized via1H NMR and EI-MS spectroscopic techniques and evaluated for their anti-hyperglycemic potential. Compounds 1-33 exhibited good to moderate in vitro α-amylase and α-glucosidase inhibitory activities in the range of IC50 values 2.01 ± 0.03-6.44 ± 0.16 and 2.09 ± 0.08-6.54 ± 0.10 µM as compared to the standard acarbose (IC50 = 1.92 ± 0.17 µM) and (IC50 = 1.99 ± 0.07 µM), respectively. The limited structure-activity relationship suggested that different substitutions on aryl part of the synthetic compounds are responsible for variable activity. Kinetic study predicted that compounds 1-33 followed mixed and non-competitive type of inhibitions against α-amylase and α-glucosidase enzymes, respectively. In silico studies revealed that both triazole and aryl ring along with different substitutions were playing an important role in the binding interactions of inhibitors within the enzyme pocket. The synthetic molecules were found to have dual inhibitory potential against both enzymes thus they may serve as lead candidates for the drug development and research in the future studies.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/chemical synthesis
  17. Alomari M, Taha M, Rahim F, Selvaraj M, Iqbal N, Chigurupati S, et al.
    Bioorg Chem, 2021 03;108:104638.
    PMID: 33508679 DOI: 10.1016/j.bioorg.2021.104638
    A series of nineteen (1-19) indole-based-thiadiazole derivatives were synthesized, characterized by 1HNMR, 13C NMR, MS, and screened for α-glucosidase inhibition. All analogs showed varied α-glucosidase inhibitory potential with IC50 value ranged between 0.95 ± 0.05 to 13.60 ± 0.30 µM, when compared with the standard acarbose (IC50 = 1.70 ± 0.10). Analogs 17, 2, 1, 9, 7, 3, 15, 10, 16, and 14 with IC50 values 0.95 ± 0.05, 1.10 ± 0.10, 1.30 ± 0.10, 1.60 ± 0.10, 2.30 ± 0.10, 2.30 ± 0.10, 2.80 ± 0.10, 4.10 ± 0.20 and 4.80 ± 0.20 µM respectively showed highest α-glucosidase inhibition. All other analogs also exhibit excellent inhibitory potential. Structure activity relationships have been established for all compounds primarily based on substitution pattern on the phenyl ring. Through molecular docking study, binding interactions of the most active compounds were confirmed. We further studied the kinetics study of analogs 1, 2, 9 and 17 and found that they are Non-competitive inhibitors.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/chemical synthesis
  18. Khan KM, Qurban S, Salar U, Taha M, Hussain S, Perveen S, et al.
    Bioorg Chem, 2016 10;68:245-58.
    PMID: 27592296 DOI: 10.1016/j.bioorg.2016.08.010
    Current study based on the synthesis of new thiazole derivatives via "one pot" multicomponent reaction, evaluation of their in vitro α-glucosidase inhibitory activities, and in silico studies. All synthetic compounds were fully characterized by (1)H NMR, (13)C NMR and EIMS. CHN analysis was also performed. These newly synthesized compounds showed activities in the range of IC50=9.06±0.10-82.50±1.70μM as compared to standard acarbose (IC50=38.25±0.12μM). It is worth mentioning that most of the compounds such as 1 (IC50=23.60±0.39μM), 2 (IC50=22.70±0.60μM), 3 (IC50=22.40±0.32μM), 4 (IC50=26.5±0.40μM), 6 (IC50=34.60±0.60μM), 7 (IC50=26.20±0.43μM), 8 (IC50=14.06±0.18μM), 9 (IC50=17.60±0.28μM), 10 (IC50=27.16±0.41μM), 11 (IC50=19.16±0.19μM), 12 (IC50=9.06±0.10μM), 13 (IC50=12.80±0.21μM), 14 (IC50=11.94±0.18μM), 15 (IC50=16.90±0.20μM), 16 (IC50=12.60±0.14μM), 17 (IC50=16.30±0.29μM), and 18 (IC50=32.60±0.61μM) exhibited potent inhibitory potential. Molecular docking study was performed in order to understand the molecular interactions between the molecule and enzyme. Newly identified α-glucosidase inhibitors except few were found to be completely non-toxic.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/chemical synthesis
  19. Salar U, Taha M, Khan KM, Ismail NH, Imran S, Perveen S, et al.
    Eur J Med Chem, 2016 Oct 21;122:196-204.
    PMID: 27371923 DOI: 10.1016/j.ejmech.2016.06.037
    3-Thiazolylcoumarin derivatives 1-14 were synthesized via one-pot two step reactions, and screened for in vitro α-glucosidase inhibitory activity. All compounds showed inhibitory activity in the range of IC50 = 0.12 ± 0.01-16.20 ± 0.23 μM as compared to standard acarbose (IC50 = 38.25 ± 0.12 μM), and also found to be nontoxic. Molecular docking study was carried out in order to establish the structure-activity relationship (SAR) which demonstrated that electron rich centers at one and electron withdrawing centers at the other end of the molecules showed strong inhibitory activity. All the synthesized compounds were characterized by spectroscopic techniques such as EI-MS, HREI-MS, (1)H NMR and (13)C NMR. CHN analysis was also performed.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/chemical synthesis*
  20. Zawawi NK, Taha M, Ahmat N, Ismail NH, Wadood A, Rahim F
    Bioorg Chem, 2017 02;70:184-191.
    PMID: 28043716 DOI: 10.1016/j.bioorg.2016.12.009
    Thiourea derivatives having benzimidazole 1-17 have been synthesized, characterized by 1H NMR, 13C NMR and EI-MS and evaluated for α-glucosidase inhibition. Identification of potential α-glucosidase inhibitors were done by in vitro screening of 17 thiourea bearing benzimidazole derivatives using Baker's yeast α-glucosidase enzyme. Compounds 1-17 exhibited a varying degree of α-glucosidase inhibitory activity with IC50 values between 35.83±0.66 and 297.99±1.20μM which are more better than the standard acarbose (IC50=774.5±1.94μM). Compound 10 and 14 showed significant inhibitory effects with IC50 value 50.57±0.81 and 35.83±0.66μM, respectively better than the rest of the series. Structure activity relationships were established. Molecular docking studies were performed to understand the binding interaction of the compounds.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/chemical synthesis
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links