Displaying all 19 publications

Abstract:
Sort:
  1. Singh H
    Br Med J (Clin Res Ed), 1986 Feb 08;292(6517):397-8.
    PMID: 3080188 DOI: 10.1136/bmj.292.6517.397
    Over two years cord blood from 27 879 babies was screened for glucose-6-phosphate dehydrogenase (G6PD) deficiency. The overall incidence was 3.1% in boys and 1.6% in girls. Sixty nine babies had severe jaundice (bilirubin concentration greater than 380 mmol/l (20 mg/100 ml], and exchange transfusion was performed. Parents were given written and verbal instructions to avoid herbs and drugs that trigger kernicterus, which reduced the incidence of kernicterus and thereby prevented mental retardation. G6PD deficiency is common in all three ethnic groups (Malays, Chinese, and Indians) in Malaysia and screening is recommended.
    Matched MeSH terms: Glucosephosphate Dehydrogenase Deficiency/epidemiology*
  2. Ganesan J, Lie-Injo LE, Ong Beng P
    Hum. Hered., 1975;25(4):258-62.
    PMID: 1184011 DOI: 10.1159/000152733
    A survey of abnormal hemoglobins, G6PD deficiency and hereditary ovalocytosis was carried out among the Dayaks of Sarawak. The only abnormal hemoglobin found was Hb Co Sp, which occurred in 0.35% of the Land Dayaks and 0.83% of the Sea Dayaks. G6PD deficiency occurred in 5.3% of the male Land Dayaks and 5.0% of the male Sea Dayaks; no electrophoretic variant of G6PD was found in any of the 285 Land Dayaks and 240 Sea Dayaks examined. Hereditary ovalocytosis was found in 12.7% of the Land Dayaks and 9.0% of the Sea Dayaks.
    Matched MeSH terms: Glucosephosphate Dehydrogenase Deficiency/epidemiology*
  3. Fong T
    Mod Med Asia, 1977 Sep;13(9):14-6.
    PMID: 340882
    Matched MeSH terms: Glucosephosphate Dehydrogenase Deficiency/epidemiology*
  4. Hassan K
    PMID: 8629087
    Matched MeSH terms: Glucosephosphate Dehydrogenase Deficiency/epidemiology*
  5. Ainoon O, Joyce J, Boo NY, Cheong SK, Hamidah NH
    Malays J Pathol, 1995 Dec;17(2):61-5.
    PMID: 8935127
    G6PD deficiency is the most common human enzymopathy and affects 200 million people worldwide. To date more than 400 biochemical variants and at least 60 different point mutations in the G6PD locus have been discovered. In Malaysia the overall incidence of G6PD deficiency among males is 3.1%, being more prevalent among the Chinese and Malays and less common among the Indians. As part of our initial effort to characterise G6PD deficiency in the Malaysian population, we investigated 18 G6PD deficient Chinese male neonates for the G6PD mutation G-->T at nt 1376, a common mutation seen among the Chinese in Taiwan and mainland China. The mutation was detected by a PCR-based technique using primers that artificially create a site for restriction enzyme Xho I. We found 61% (11 out of 18) of the Chinese G6PD deficient male neonates positive for this mutation. Study of enzyme electrophoretic mobility in 7 of the cases positive for this mutation revealed three different patterns of mobility. 107% (5 out of 7), 103% (1 out of 7) and 100% (1 out of 7). This study shows that mutation G-->T at nt 1376 is a common allele causing G6PD deficiency in Malaysians of Chinese origin. The finding of different patterns of electrophoretic mobility among the 7 cases positive for 1376 G-->T mutation supports the notion that diverse biochemical variants may share the same mutation.
    Matched MeSH terms: Glucosephosphate Dehydrogenase Deficiency/epidemiology
  6. Hon AT, Balakrishnan S, Ahmad Z
    Med J Malaysia, 1989 Mar;44(1):30-4.
    PMID: 2626111
    Cord blood from 8,975 babies delivered in Hospital Sultanah Aminah Johor Bahru over a period of eight months (1st August 1985 to 31st March 1986) were screened for G6PD deficiency. The overall incidence was 4.5% in Chinese, 3.5% in Malays and 1.5% in Indian babies. One hundred of these babies were observed in the nursery for seven days and their daily serum bilirubin recorded. The serum bilirubin peaked at 96 hours to a value of 12mg%. None of the babies in the nursery developed a serum bilirubin level of more than 15mg%. Six of the babies with G6PD deficiency that were sent home were readmitted with hyperbilirubinaemia that needed exchange transfusion.
    Matched MeSH terms: Glucosephosphate Dehydrogenase Deficiency/epidemiology*
  7. Lai YK, Lai NM, Lee SW
    Ann Hematol, 2017 May;96(5):839-845.
    PMID: 28197721 DOI: 10.1007/s00277-017-2945-6
    Emerging epidemiological evidence suggests that patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency may have a higher risk of developing diabetes. The aim of the review was to synthesise the evidence on the association between G6PD deficiency and diabetes. A systematic search on Medline, EMBASE, AMED and CENTRAL databases for studies published between January 1966 and September 2016 that assessed the association between G6PD deficiency and diabetes was conducted. This was supplemented by a review of the reference list of retrieved articles. We extracted data on study characteristics, outcomes and performed an assessment on the methodological quality of the studies. A random-effects model was used to compute the summary risk estimates. Fifteen relevant publications involving 949,260 participants were identified, from which seven studies contributed to the meta-analysis. G6PD deficiency was associated with a higher odd of diabetes (odds ratio 2.37, 95% confidence interval 1.50-3.73). The odds ratio of diabetes among men was higher (2.22, 1.31-3.75) compared to women (1.87, 1.12-3.12). This association was broadly consistent in the sensitivity analysis. Current evidence suggests that G6PD deficiency may be a risk factor for diabetes, with higher odds among men compared to women. Further research is needed to determine how G6PD deficiency moderates diabetes.
    Matched MeSH terms: Glucosephosphate Dehydrogenase Deficiency/epidemiology*
  8. Saha N, Banerjee B
    Trop Geogr Med, 1971 Jun;23(2):141-4.
    PMID: 5568538
    Matched MeSH terms: Glucosephosphate Dehydrogenase Deficiency/epidemiology*
  9. Lie-Injo Luan Eng, Pillay RP, Virik HK
    Trans R Soc Trop Med Hyg, 1966;60(2):262-6.
    PMID: 5922616 DOI: 10.1016/0035-9203(66)90039-3
    Matched MeSH terms: Glucosephosphate Dehydrogenase Deficiency/epidemiology*
  10. Wang FL, Boo NY, Ainoon O, Wong MK
    Singapore Med J, 2009 Jan;50(1):62-7.
    PMID: 19224086
    INTRODUCTION:
    This study aimed to compare the detection rates of glucose-6-phosphate dehydrogenase (G6PD) deficiency in neonates by fluorescent spot test (FST), enzyme assay and molecular methods, and to identify which method was a significant predictor of severe hyperbilirubinaemia.
    METHODS:
    74 term infants of Chinese descent admitted with severe hyperbilirubinaemia (total serum bilirubin equal or greater than 300 micromol/L) and 125 healthy term infants born in the hospital without severe hyperbilirubinaemia were recruited into the study. Specimens of blood were collected from each infant for FST, G6PD enzyme assay and TaqMan minor groove binder single nucleotide polymorphism genotyping assay.
    RESULTS:
    26 (13.1 percent) infants were diagnosed to have G6PD deficiency by FST. They had significantly lower median enzyme levels (0.8 IU/g Hb, interquartile range [IQR] 0.4-4.3) than those diagnosed to be normal (12.0 IU/g Hb, IQR 10.3-15.8) (p-value is less than 0.0001). Based on the enzyme assay, 39 (19.6 percent) infants had G6PD deficiency at an enzyme cut-off level of less than 8.5 IU/g Hb. G6PD mutation was detected in 27 (13.6 percent) infants. Logistic regression analysis showed that the only significant predictors of severe hyperbilirubinaemia were G6PD deficiency based on a cut-off level of less than 8.5 IU/g Hb (adjusted odds ratio [OR] 5.3, 95 percent confidence interval [CI] 2.4-11.4; p-value is less than 0.0001) and exclusive breast-feeding (adjusted OR 11.4, 95 percent CI 3.1-42.4; p-value is less than 0.0001). The gender and birth weight of infants, FST results, G6PD mutation and the actual G6PD enzyme levels were not significant predictors.
    CONCLUSION:
    A G6PD enzyme level of less than 8.5 IU/g Hb is a significant predictor of severe hyperbilirubinaemia
    Matched MeSH terms: Glucosephosphate Dehydrogenase Deficiency/epidemiology
  11. Noraihan MN, See MH, Raja R, Baskaran TP, Symonds EM
    Med J Malaysia, 2005 Oct;60(4):460-8.
    PMID: 16570708
    The objective of the study is to determine the proportion and different types of birth defects among the children born in Hospital Kuala Lumpur. A cross-sectional study was conducted for a period of 18 months where all consecutively born infants, dead or alive were included. There were total of 34,109 births recorded during this period. The proportion of birth defects in Hospital Kuala Lumpur was 3.1% (n = 1056). The commonest involved were the hematology system, (157.7 per 10,000 births), the central nervous system, genitourinary system and chromosomal anomalies. The proportion was significantly higher in males and in the Chinese (p < 0.001). The commonest abnormalities are Glucose 6 Phosphate Deficiency (157.7/10000), Down's syndrome (12.6/10000), thalassaemia (8.8/10000), cleft lip and/or palate (7.6/10000) and anencephaly (7.3/10000). Neural tube defect is common and ranked second after G6PD deficiency. There is a need for a birth defect registry to assess the extent of the problem in Malaysia.
    Matched MeSH terms: Glucosephosphate Dehydrogenase Deficiency/epidemiology
  12. Ainoon O, Boo NY, Yu YH, Cheong SK, Hamidah HN
    Hematology, 2006 Apr;11(2):113-8.
    PMID: 16753852 DOI: 10.1080/10245330500155184
    A 2-year-old Chinese boy was referred to Hospital UKM for investigation of recurrent episodes of dark-coloured urine and pallor since birth. He was born prematurely at 34 weeks gestation and developed severe early-onset neonatal jaundice requiring exchange blood transfusion. Screening at birth showed Glucose-6-phosphate dehydrogenase (G6PD) deficiency. On admission, physical examination revealed pallor, jaundice and mild hepatomegaly. Results of laboratory investigations showed a hemoglobin level of 11.0 g/dl with a hemolytic blood picture, reticulocytosis of 20% and red cell G6PD activity reported as undetectable. The patient's DNA was analysed for G6PD mutations by PCR-based techniques and DNA sequencing and results showed a 24 bp deletion of nucleotide 953-976 in the exon 9 of the G6PD gene. DNA analysis was also performed on blood samples of the patient's mother and female sibling confirming their heterozygous status, although both showed normal red cell G6PD activity levels. The patient was discharged well and his parents were appropriately advised on the condition and the importance of taking folic acid regularly. This is a first case report in Malaysia of G6PD deficiency causing chronic-hemolytic anemia. The rare 24 bp deletion causes the G6PD Nara variant, previously reported only in two other unrelated males, a Japanese and a Portuguese both with chronic hemolytic anemia.
    Matched MeSH terms: Glucosephosphate Dehydrogenase Deficiency/epidemiology
  13. Ainoon O, Joyce J, Boo NY, Cheong SK, Zainal ZA, Hamidah NH
    Hum Mutat, 1999 Oct;14(4):352.
    PMID: 10502785 DOI: 10.1002/(SICI)1098-1004(199910)14:4<352::AID-HUMU1
    We screened 38 G6PD-deficient male Chinese neonates for known G6PD mutations using established PCR-based techniques. We found 50.0% (19 of 38) were mutation 1376G>T, 34.2% (13 of 38) were mutation 1388G>A, 5.2% (2 of 38 ) were mutation 95A>G and 2.2% (1 of 38) was mutation 1024C>T. In 7% (3 of 38) of the cases the mutations remained uncharacterised. Sixty three percent (24 of 38) of the G6PD deficient neonates had neonatal jaundice with 28.9 % (11 of 38) developing moderate to severe hyperbilirubinemia. The group of neonates with 1388 mutation showed the highest incidence of moderate to severe hyperbilirubinemia requiring phototherapy and/or exchange transfusion respectively. Majority (70%) of the G6PD deficient neonates showed severe enzyme deficiency. However, there was no meaningful association between the level of enzyme activity and the severity of neonatal jaundice. In summary, four mutations account for more than 90% of the G6PD deficiency cases among the Chinese in Malaysia and the pattern of distribution of the molecular variants is similar to those found among the Chinese in Taiwan and southern mainland China. Our findings also suggest the possible association of nt 1388 mutation with severe neonatal jaundice.
    Matched MeSH terms: Glucosephosphate Dehydrogenase Deficiency/epidemiology
  14. Ainoon O, Alawiyah A, Yu YH, Cheong SK, Hamidah NH, Boo NY, et al.
    PMID: 12971572
    Neonatal screening for G6PD deficiency has long been established in many countries. The aim of the study was to determine whether the routine semiquantitative fluorescent spot test could detect all cases of G6PD deficiency, including those cases with partial deficiency (residual red cell G6PD activity between 20-60% of normal). We compared the results of G6PD screening by the semiquantitative fluorescent spot test and quantitative G6PD activity assay on a group of 976 neonates and 67 known female heterozygotes. The values for mean G6PD activity of G6PD-normal neonates and 293 healthy adult females were determined. There was no significant difference in the mean normal G6PD activity between the two racial groups in the neonates (669 Malays, 307 Chinese) and in the 293 healthy adult females (150 Malays, 143 Chinese) group. The values for the upper limits of total deficiency (20% of normal residual activity) for neonates and adult females were 2.92 U/gHb and 1.54 U/gHb, respectively. The upper limits of partial deficiency (60% of normal residual activity) were 8.7 U/gHb and 4.6 U/gHb respectively. The prevalence of G6PD deficiency among the male neonates was 5.1% (26) by both the fluorescent spot test and the enzyme assay method. The G6PD activity levels of all 26 cases of G6PD-deficient male neonates were < 20% normal (severe enzyme deficiency). In the female neonate group, the frequency of G6PD deficiency was 1.3% (6 of 472) by the fluorescent spot test and 9.35% (44 of 472) by enzyme assay. The 6 cases diagnosed as deficient by the fluorescent spot test showed severe enzyme deficiency (< 2.92 U/gHb). The remaining 38 female neonates had partial enzyme deficiency and all were misdiagnosed as normal by the fluorescent spot test. In the female heterozygote group, G6PD deficiency was diagnosed in 53% (35 of 67) by enzyme assay and in 7.5% (4 of 67) of cases by the fluorescent spot test. The 4 cases detected by fluorescent spot test had severe enzyme deficiency (<1.6 U/gHb). The remaining 31 (46.3%) cases, diagnosed as normal by fluorescent spot test, showed partial G6PD deficiency. In conclusion, we found that the semiquantitative fluorescent spot test could only diagnose cases of total G6PD deficiency and misclassified the partially-deficient cases as normal. In this study, the overall prevalence of G6PD deficiency was 3.28% by the semiquantitative fluorescent spot test and 7.17% by enzyme assay. This means that 3.9% of G6PD-deficient neonates were missed by the routine fluorescent spot test and they were found to be exclusively females. This study demonstrates a need to use a method that can correctly classify female heterozygotes with partial G6PD deficiency. The clinical implication is that these individuals may be at risk of the hemolytic complication of G6PD deficiency.
    Matched MeSH terms: Glucosephosphate Dehydrogenase Deficiency/epidemiology
  15. Iwai K, Hirono A, Matsuoka H, Kawamoto F, Horie T, Lin K, et al.
    Hum Genet, 2001 Jun;108(6):445-9.
    PMID: 11499668
    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a heterogeneous enzyme abnormality with high frequency in tropical areas. We performed population screening and molecular studies of G6PD variants to clarify their distribution and features in Southeast Asia. A total of 4317 participants (2019 males, 2298 females) from 16 ethnic groups in Myanmar, Lao in Laos, and Amboinese in Indonesia were screened with a single-step screening method. The prevalence of G6PD-deficient males ranged from 0% (the Akha) to 10.8% (the Shan). These G6PD-deficient individuals and 12 G6PD-deficient patients who had been diagnosed at hospitals in Indonesia and Malaysia were subjected to molecular analysis by a combination of polymerase-chain-reaction-based single-strand conformation polymorphism analysis and direct sequencing. Ten different missense mutations were identified in 63 G6PD-deficient individuals (50 hemizygotes, 11 heterozygotes, and 2 homozygotes) from 14 ethnic groups. One missense mutation (1291 G-->A) found in an Indonesian Chinese, viz., G6PD Surabaya, was previously unknown. The 487 G-->A (G6PD Mahidol) mutation was widely seen in Myanmar, 383 T-->C (G6PD Vanua Lava) was specifically found among Amboinese, 871 G-->A (G6PD Viangchan) was observed mainly in Lao, and 592 C-->T (G6PD Coimbra) was found in Malaysian aborigines (Orang Asli). The other five mutations, 95 A-->G (G6PD Gaohe), 1003 G-->A (G6PD Chatham), 1360 C-->T (G6PD Union), 1376 G-->T (G6PD Canton), and 1388 G-->A (G6PD Kaiping) were identified mostly in accordance with distributions reported previously.
    Matched MeSH terms: Glucosephosphate Dehydrogenase Deficiency/epidemiology
  16. Amini F, Ismail E, Zilfalil BA
    Intern Med J, 2011 Apr;41(4):351-3.
    PMID: 21507164 DOI: 10.1111/j.1445-5994.2011.02456.x
    This study aims to define the prevalence and the molecular basis of G6PD deficiency in the Negrito tribe of the Malaysian Orang Asli. Four hundred and eighty seven consenting Negrito volunteers were screened for G6PD deficiency through the use of a fluorescent spot test. DNA from deficient individuals underwent PCR-RFLP analysis using thirteen recognized G6PD mutations. In the instances when the mutation could not be identified by PCR-RFLP, the entire coding region of the G6PD gene was subjected to DNA sequencing. In total, 9% (44/486) of the sample were found to be G6PD-deficient. However, only 25 samples were subjected to PCR-RFLP and DNA sequencing. Of these, three were found to carry Viangchan, one Coimbra and 16, a combination of C1311T in exon 11 and IVS11 T93C. Mutation(s) for the five remaining samples are unknown. The mean G6PD enzyme activity ranged 5.7 IU/gHb in deficient individuals. Our results demonstrate that the frequency of G6PD deficiency is higher among the Negrito Orang Asli than other Malaysian races. The dual presence of C1311T and IVS11 T93C in 64% of the deficient individuals (16/44) could well be a result of genetic drift within this isolated group.
    Matched MeSH terms: Glucosephosphate Dehydrogenase Deficiency/epidemiology
  17. Eng LI, McKay DA, Govindasamy S
    PMID: 5002823
    Matched MeSH terms: Glucosephosphate Dehydrogenase Deficiency/epidemiology*
  18. Kandasamy Y, Somasundram P
    Singapore Med J, 2007 Oct;48(10):926-8.
    PMID: 17909678
    The Orang Asli are the indigenous population in peninsular Malaysia and are in fact a diverse sub-ethnic group with different languages. Our aim was to collect data on Orang Asli newborns, from western and central Pahang, that were admitted to a general hospital with paediatric specialist services.
    Matched MeSH terms: Glucosephosphate Dehydrogenase Deficiency/epidemiology
  19. Saha N, Toh CC, Ghosh MB
    J Med Genet, 1973 Dec;10(4):340-5.
    PMID: 4204387
    Matched MeSH terms: Glucosephosphate Dehydrogenase Deficiency/epidemiology
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links