Displaying all 11 publications

Abstract:
Sort:
  1. Mohammad Hood MH, Tengku Abdul Hamid TH, Abdul Wahab RA, Huyop FZ, Kaya Y, Abdul Hamid AAA
    J Biomol Struct Dyn, 2023 Apr;41(7):2831-2847.
    PMID: 35174777 DOI: 10.1080/07391102.2022.2039772
    Efficacy of a β-1,4-glucosidase from Trichoderma harzianum T12 (ThBglT12) in disrupting the cell wall of the phytopathogenic fungus M. phaseolina (Macrophomina phaseolina) was studied, as the underlying molecular mechanisms of cell wall recognition remains elusive. In this study, the binding location identified by a consensus of residues predicted by COACH tool, blind docking, and multiple sequence alignment revealed that molecular recognition by ThBglT12 occurred through interactions between the α-1,3-glucan, β-1,3-glucan, β-1,3/1,4-glucan, and chitin components of M. phaseolina, with corresponding binding energies of -7.4, -7.6, -7.5 and -7.8 kcal/mol. The residue consensus verified the participation of Glu172, Tyr304, Trp345, Glu373, Glu430, and Trp431 in the active site pocket of ThBglT12 to bind the ligands, of which Trp345 was the common interacting residue. Root mean square deviation (RMSD), root mean square fluctuation (RMSF), total energy, and minimum distance calculation from molecular dynamics (MD) simulation further confirmed the stability and the closeness of the binding ligands into the ThBglT12 active site pocket. The h-bond occupancy by Glu373 and Trp431 instated the role of the nucleophile for substrate recognition and specificity, crucial for cleaving the β-1,4 linkage. Further investigation showed that the proximity of Glu373 to the anomeric carbon of β-1,3/1,4-glucan (3.5 Å) and chitin (5.5 Å) indicates the nucleophiles' readiness to form enzyme-substrate intermediates. Plus, the neighboring water molecule appeared to be correctly positioned and oriented towards the anomeric carbon to hydrolyze the β-1,3/1,4-glucan and chitin, in less than 4.0 Å. In a nutshell, the study verified that the ThBglT12 is a good alternative fungicide to inhibit the growth of M. phaseolina.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Glucans/chemistry
  2. Nawawi WMFW, Lee KY, Kontturi E, Bismarck A, Mautner A
    Int J Biol Macromol, 2020 Apr 01;148:677-687.
    PMID: 31954796 DOI: 10.1016/j.ijbiomac.2020.01.141
    The structural component of fungal cell walls comprises of chitin covalently bonded to glucan; this constitutes a native composite material (chitin-glucan, CG) combining the strength of chitin and the toughness of glucan. It has a native nano-fibrous structure in contrast to nanocellulose, for which further nanofibrillation is required. Nanopapers can be manufactured from fungal chitin nanofibrils (FChNFs). FChNF nanopapers are potentially applicable in packaging films, composites, or membranes for water treatment due to their distinct surface properties inherited from the composition of chitin and glucan. Here, chitin-glucan nanofibrils were extracted from common mushroom (Agaricus bisporus) cell walls utilizing a mild isolation procedure to preserve the native quality of the chitin-glucan complex. These extracts were readily disintegrated into nanofibre dimensions by a low-energy mechanical blending, thus making the extract dispersion directly suitable for nanopaper preparation using a simple vacuum filtration process. Chitin-glucan nanopaper morphology, mechanical, chemical, and surface properties were studied and compared to chitin nanopapers of crustacean (Cancer pagurus) origin. It was found that fungal extract nanopapers had distinct physico-chemical surface properties, being more hydrophobic than crustacean chitin.
    Matched MeSH terms: Glucans/chemistry*
  3. Alzorqi I, Sudheer S, Lu TJ, Manickam S
    Ultrason Sonochem, 2017 Mar;35(Pt B):531-540.
    PMID: 27161557 DOI: 10.1016/j.ultsonch.2016.04.017
    Ganoderma mushroom cultivated recently in Malaysia to produce chemically different nutritional fibers has attracted the attention of the local market. The extraction methods, molecular weight and degree of branching of (1-3; 1-6)-β-d-glucan polysaccharides is of prime importance to determine its antioxidant bioactivity. Therefore three extraction methods i.e. hot water extraction (HWE), soxhlet extraction (SE) and ultrasound assisted extraction (US) were employed to study the total content of (1-3; 1-6)-β-d-glucans, degree of branching, structural characteristics, monosaccharides composition, as well as the total yield of polysaccharides that could be obtained from the artificially cultivated Ganoderma. The physical characteristics by HPAEC-PAD, HPGPC and FTIR, as well as the antioxidant in vitro assays of DPPH scavenging activity and ferric reducing power (FRAP) indicated that (1-3; 1-6)-β-d-glucans of Malaysian mushroom have better antioxidant activity, higher molecular weight and optimal degree of branching when extracted by US in comparison with conventional methods.
    Matched MeSH terms: Glucans/chemistry*
  4. Tan MS, Wang Y, Dykes GA
    Foodborne Pathog Dis, 2013 Nov;10(11):992-4.
    PMID: 23941519 DOI: 10.1089/fpd.2013.1536
    This study aimed to establish, as a proof of concept, whether bacterial cellulose (BC)-derived plant cell wall models could be used to investigate foodborne bacterial pathogen attachment. Attachment of two strains each of Salmonella enterica and Listeria monocytogenes to four BC-derived plant cell wall models (namely, BC, BC-pectin [BCP], BC-xyloglucan [BCX], and BC-pectin-xyloglucan [BCPX]) was investigated. Chemical analysis indicated that the BCPX composite (31% cellulose, 45.6% pectin, 23.4% xyloglucan) had a composition typical of plant cell walls. The Salmonella strains attached in significantly (p<0.05) higher numbers (~6 log colony-forming units [CFU]/cm(2)) to the composites than the Listeria strains (~5 log CFU/cm(2)). Strain-specific differences were also apparent with one Salmonella strain, for example, attaching in significantly (p<0.05) higher numbers to the BCX composite than to the other composites. This study highlights the potential usefulness of these composites to understand attachment of foodborne bacteria to fresh produce.
    Matched MeSH terms: Glucans/chemistry
  5. Subramaniam S, Sabaratnam V, Heng CK, Kuppusamy UR
    Int J Med Mushrooms, 2020;22(1):65-78.
    PMID: 32463999 DOI: 10.1615/IntJMedMushrooms.2020033250
    Ganoderma neo-japonicum is an annual polypore mushroom that is consumed by Malaysian indigenous tribes to treat various ailments including diabetes. The present study aimed to investigate the nutritive composition and in vitro antihyperglycemic effects of G. neo-japonicum extracts on 3T3-L1 preadipocytes. Nutritional analysis of G. neo-japonicum basidiocarps indicated a predominant presence of carbohydrates, proteins, dietary fiber, and microelements. Hot aqueous extract (AE) and its isolated (1,3)(1,6)-β-D-glucan polysaccharide (GNJP) from basidiocarps of G. neo-japonicum were evaluated for their ability to stimulate insulin independent adipogenesis, glucose uptake, adiponectin secretion, and regulate gene expression in 3T3-L1 adipocytes. GNJP showed a dose dependent stimulation of glucose uptake and adiponectin secretion but attenuated lipid accumulation in 3T3-L1 adipocytes. It upregulated the expressions of adiponectin, Aktl (protein kinase B), PPARγ (peroxisome proliferator activated receptor gamma), PRKAG2 (protein kinase, AMP activated), and Slc2a4 (glucose transporter) genes to stimulate glucose uptake in 3T3-L1 cells, which may have contributed to the insulin-mimicking activities observed in this study. In summary, the nutritive compositions and significant glucose uptake stimulatory activities of GNJP indicated that it may have potential use in the formulation of functional food for the management of hyperglycemia, insulin resistance, and related complications.
    Matched MeSH terms: Glucans/chemistry
  6. Mohd Fauziee NA, Chang LS, Wan Mustapha WA, Md Nor AR, Lim SJ
    Int J Biol Macromol, 2021 Jan 15;167:1135-1145.
    PMID: 33188815 DOI: 10.1016/j.ijbiomac.2020.11.067
    Brown seaweeds are rich source of functional polysaccharides that exhibit various bioactivities. However, Malaysian seaweeds are under-utilised, leading to low revenue throughout the supply chain of the seaweed industry. The aims of this study were to extract the functional polysaccharides, namely fucoidan (F), laminaran (L) and alginate (A) from Malaysian brown seaweeds (Sargassum polycystum, Turbinaria ornata and Padina boryana) and subsequently evaluate the properties of the extracted polysaccharides. P. boryana recorded the significantly (p ≤ 0.05) highest carbohydrate content (74.78 ± 1.63%) with highest fucoidan yield (Fpad = 1.59 ± 0.16%) while T. ornata contained significantly (p ≤ 0.05) highest alginate yield (Atur = 105.19 ± 3.45%). Water activities of these extracted polysaccharides varied from 0.63-0.71 with average score of browning indexes (~40). Fourier transform infrared (FTIR) spectroscopy analysis demonstrated that the extracted polysaccharides exhibited similar spectral pattern of spectra with the respective standards. Meanwhile, laminaran extracts showed the significantly highest (p ≤ 0.05) total phenolic contents (Lsar = 43.29 ± 0.43 mgGAE/g) and superoxide anion scavenging activity (Lsig = 21.7 ± 3.6%). On the other hand, the significantly highest (p ≤ 0.05) DPPH scavenging activity was recorded in alginate with Asar at 85.3 ± 0.8%. These findings reported the properties and bioactivities of natural polysaccharides from Malaysian brown seaweeds that revealed the potential to develop high-value functional ingredients from Malaysian brown seaweeds.
    Matched MeSH terms: Glucans/chemistry*
  7. Kahar UM, Ng CL, Chan KG, Goh KM
    Appl Microbiol Biotechnol, 2016 Jul;100(14):6291-307.
    PMID: 27000839 DOI: 10.1007/s00253-016-7451-6
    Type I pullulanases are enzymes that specifically hydrolyse α-1,6 linkages in polysaccharides. This study reports the analyses of a novel type I pullulanase (PulASK) from Anoxybacillus sp. SK3-4. Purified PulASK (molecular mass of 80 kDa) was stable at pH 5.0-6.0 and was most active at pH 6.0. The optimum temperature for PulASK was 60 °C, and the enzyme was reasonably stable at this temperature. Pullulan was the preferred substrate for PulASK, with 89.90 % adsorbance efficiency (various other starches, 56.26-72.93 % efficiency). Similar to other type I pullulanases, maltotriose was formed on digestion of pullulan by PulASK. PulASK also reacted with β-limit dextrin, a sugar rich in short branches, and formed maltotriose, maltotetraose and maltopentaose. Nevertheless, PulASK was found to preferably debranch long branches at α-1,6 glycosidic bonds of starch, producing amylose, linear or branched oligosaccharides, but was nonreactive against short branches; thus, no reducing sugars were detected. This is surprising as all currently known type I pullulanases produce reducing sugars (predominantly maltotriose) on digesting starch. The closest homologue of PulASK (95 % identity) is a type I pullulanase from Anoxybacillus sp. LM14-2 (Pul-LM14-2), which is capable of forming reducing sugars from starch. With rational design, amino acids 362-370 of PulASK were replaced with the corresponding sequence of Pul-LM14-2. The mutant enzyme formed reducing sugars on digesting starch. Thus, we identified a novel motif involved in substrate specificity in type I pullulanases. Our characterization may pave the way for the industrial application of this unique enzyme.
    Matched MeSH terms: Glucans/chemistry
  8. Tan MS, Moore SC, Tabor RF, Fegan N, Rahman S, Dykes GA
    BMC Microbiol, 2016 09 15;16:212.
    PMID: 27629769 DOI: 10.1186/s12866-016-0832-2
    BACKGROUND: Processing of fresh produce exposes cut surfaces of plant cell walls that then become vulnerable to human foodborne pathogen attachment and contamination, particularly by Salmonella enterica. Plant cell walls are mainly composed of the polysaccharides cellulose, pectin and hemicelluloses (predominantly xyloglucan). Our previous work used bacterial cellulose-based plant cell wall models to study the interaction between Salmonella and the various plant cell wall components. We demonstrated that Salmonella attachment was favoured in the presence of pectin while xyloglucan had no effect on its attachment. Xyloglucan significantly increased the attachment of Salmonella cells to the plant cell wall model only when it was in association with pectin. In this study, we investigate whether the plant cell wall polysaccharides mediate Salmonella attachment to the bacterial cellulose-based plant cell wall models through specific carbohydrate interactions or through the effects of carbohydrates on the physical characteristics of the attachment surface.

    RESULTS: We found that none of the monosaccharides that make up the plant cell wall polysaccharides specifically inhibit Salmonella attachment to the bacterial cellulose-based plant cell wall models. Confocal laser scanning microscopy showed that Salmonella cells can penetrate and attach within the tightly arranged bacterial cellulose network. Analysis of images obtained from atomic force microscopy revealed that the bacterial cellulose-pectin-xyloglucan composite with 0.3 % (w/v) xyloglucan, previously shown to have the highest number of Salmonella cells attached to it, had significantly thicker cellulose fibrils compared to other composites. Scanning electron microscopy images also showed that the bacterial cellulose and bacterial cellulose-xyloglucan composites were more porous when compared to the other composites containing pectin.

    CONCLUSIONS: Our study found that the attachment of Salmonella cells to cut plant cell walls was not mediated by specific carbohydrate interactions. This suggests that the attachment of Salmonella strains to the plant cell wall models were more dependent on the structural characteristics of the attachment surface. Pectin reduces the porosity and space between cellulose fibrils, which then forms a matrix that is able to retain Salmonella cells within the bacterial cellulose network. When present with pectin, xyloglucan provides a greater surface for Salmonella cells to attach through the thickening of cellulose fibrils.

    Matched MeSH terms: Glucans/chemistry
  9. Shah SA, Sohail M, Minhas MU, Khan S, Hussain Z, Mahmood A, et al.
    Int J Biol Macromol, 2021 Aug 31;185:350-368.
    PMID: 34171251 DOI: 10.1016/j.ijbiomac.2021.06.119
    Injectable hydrogel with multifunctional tunable properties comprising biocompatibility, anti-oxidative, anti-bacterial, and/or anti-infection are highly preferred to efficiently promote diabetic wound repair and its development remains a challenge. In this study, we report hyaluronic acid and Pullulan-based injectable hydrogel loaded with curcumin that could potentiate reepithelization, increase angiogenesis, and collagen deposition at wound microenvironment to endorse healing cascade compared to other treatment groups. The physical interaction and self-assembly of hyaluronic acid-Pullulan-grafted-pluronic F127 injectable hydrogel were confirmed using nuclear magnetic resonance (1H NMR) and Fourier transformed infrared spectroscopy (FT-IR), and cytocompatibility was confirmed by fibroblast viability assay. The CUR-laden hyaluronic acid-Pullulan-g-F127 injectable hydrogel promptly undergoes a sol-gel transition and has proved to potentiate wound healing in a streptozotocin-induced diabetic rat model by promoting 93% of wound closure compared to other groups having 35%, 38%, and 62%. The comparative in vivo study and histological examination was conducted which demonstrated an expeditious recovery rate by significantly reducing the wound healing days i.e. 35 days in a control group, 33 days in the CUR suspension group, 21 days in unloaded injectable, and 13 days was observed in CUR loaded hydrogel group. Furthermore, we suggest that the injectable hydrogel laden with CUR showed a prompt wound healing potential by increasing the cell proliferation and serves as a drug delivery platform for sustained and targeted delivery of hydrophobic moieties.
    Matched MeSH terms: Glucans/chemistry*
  10. Bera H, Abbasi YF, Gajbhiye V, Ping LL, Salve R, Kumar P, et al.
    Int J Biol Macromol, 2021 Jun 30;181:169-179.
    PMID: 33775757 DOI: 10.1016/j.ijbiomac.2021.03.152
    Curdlan (CN)-doped montmorillonite/poly(N-isopropylacrylamide-co-N,N'-methylene-bis-acrylamide) [CN/MT/P(NIPA-co-MBA)] smart nanocomposites (NCs) were developed for efficient erlotinib HCl (ERL) delivery to lung cancer cells. The placebo NCs demonstrated excellent biodegradability, pH/thermo-responsive swelling profiles and declined molar mass (M¯c) between the crosslinks with increasing temperature. The XRD, FTIR, DSC, TGA, and SEM analyses revealed the architectural chemistry of these NC scaffolds. The NCs loaded with ERL (F-1-F-3) displayed acceptable diameter (734-1120 nm) and zeta potential (+1.16 to -11.17 mV), outstanding drug entrapping capability (DEE, 78-99%) and sustained biphasic ERL elution patterns (Q8h, 53-91%). The ERL release kinetics of the optimal matrices (F-3) obeyed Higuchi model and their transport occurred through anomalous diffusion. The mucin adsorption behaviour of these matrices followed Freudlich isotherms. As compared to pure ERL, the formulation (F-3) displayed an improved anti-proliferative potential and induced apoptosis more effectively on A549 cells. Thus, the CN-doped smart NCs could be utilized as promising drug-cargoes for lung cancer therapy.
    Matched MeSH terms: beta-Glucans/chemistry*
  11. Veeraperumal S, Qiu HM, Tan CS, Ng ST, Zhang W, Tang S, et al.
    J Ethnopharmacol, 2021 Jun 28;274:114024.
    PMID: 33727110 DOI: 10.1016/j.jep.2021.114024
    ETHNOPHARMACOLOGICAL RELEVANCE: Lignosus rhinocerotis (Cooke) Ryvarden cultivar TM02, also known as tiger's milk mushroom, is regarded as important folk medicine in Malaysia, while is used for the treatment of liver cancer, chronic hepatitis, gastric ulcer in traditional Chinese medicine. However, there is no compilation of scientific evidence that its protection for gastric, and no attempts have been made to understand how polysaccharides in Lignosus rhinocerotis might promote intestinal mucosal wound healing.

    AIM OF THE STUDY: This study aimed to investigate the effect and mechanism of β-glucan prepared from L. rhinocerotis using an enzymatic method on epithelial restitution during intestinal mucosal damage.

    MATERIALS AND METHODS: Based on FT-IR, MALDI-TOF-MS, HPSEC-MALLS-RID, and AFM, the structure of polysaccharides from L. rhinocerotis was analysed. In addition, polysaccharides were used to test for wound healing activity in IEC-6 cells by measuring cell migration, proliferation, and expression of cell division control protein 42, Rac-1, RhoA, and Par-3.

    RESULTS: β-glucan was extracted using enzyme-assisted extraction, and a yield of approximately 8.5 ± 0.8% was obtained from the dried biomass. The β-glucan extracted by enzyme-assisted extraction (EAE) of polysaccharides was composed entirely of D-glucose with a total carbohydrate content of 95.5 ± 3.2%. The results of HPLC, FTIR, and MALDI-TOF-MS analyses revealed EAEP to be confirmed as β-glucan. The molecular weight of prepared β-glucan was found to be 5.315 × 104 g/mol by HPSEC-MALLS-RID. Furthermore, mucosal wound healing studies showed that the treatment of IEC-6 with a β-glucan concentration of 200 μg/mL promoted cell migration and proliferation, and it enhanced the protein expression of cell division control protein 42, Rac-1, RhoA, and Par-3.

    CONCLUSIONS: The present study reveals that the prepared β-glucan accelerates intestinal epithelial cell proliferation and migration via activation of Rho-dependent pathway. Hence, β-glucan can be employed as a prospective therapeutic agent for the treatment of diseases associated with gastrointestinal mucosal damage, such as peptic ulcers and inflammatory bowel disease.

    Matched MeSH terms: beta-Glucans/chemistry
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links