OBJECTIVE: Our study aimed to examine and contrast the clinical and radiological characteristics of TDL, high-grade gliomas (HGG) and primary CNS lymphoma (CNSL).
METHOD: This was a retrospective review of 66 patients (23 TDL, 31 HGG and 12 CNSL). Clinical and laboratory data were obtained. MRI brain at presentation were analyzed by two independent, blinded neuroradiologists.
RESULTS: Patients with TDLs were younger and predominantly female. Sensorimotor deficits and ataxia were more common amongst TDL whereas headaches and altered mental status were associated with HGG and CNSL. Compared to HGG and CNSL, MRI characteristics supporting TDL included relatively smaller size, lack of or mild mass effect, incomplete peripheral rim enhancement, absence of central enhancement or restricted diffusion, lack of cortical involvement, and presence of remote white matter lesions on the index scan. Paradoxically, some TDLs may present atypically or radiologically mimic CNS lymphomas.
CONCLUSION: Careful evaluation of clinical and radiological features helps in differentiating TDLs at first presentation from CNS neoplasms.
MATERIALS AND METHODS: The study was conducted with tumor samples from patients diagnosed with glioblastoma (Grade IV). To create spheroids, primary cultures were isolated from tumor tissue samples; the said cultures were characterized morphologically and immunocytochemically, and then planted into round-bottom ultra low-adhesion plates. The number of cells for planting was chosen empirically. The characteristics of the growth of cell cultures were compared with spheroids from glioblastomas of patients with U373 MG stable line of human glioblastoma. Visualization of autofluorescence of metabolic coenzymes of nicotinamide adenine dinucleotide (phosphate) NAD(P)H and flavin adenine dinucleotide (FAD) in spheroids was performed by means of an LSM 880 laser scanning microscope (Carl Zeiss, Germany) with a FLIM module (Becker & Hickl GmbH, Germany). The autofluorescence decay parameters were studied under normoxic and hypoxic conditions (3.5% О2).
RESULTS: An original protocol for 3D glioblastoma spheroids cultivation was developed. Primary glial cultures from surgical material of patients were obtained and characterized. The isolated glioblastoma cells had a spindle-shaped morphology with numerous processes and a pronounced granularity of cytoplasm. All cultures expressed glial fibrillary acidic protein (GFAP). The optimal seeding dose of 2000 cells per well was specified; its application results in formation of spheroids with a dense structure and stable growth during 7 days. The FLIM method helped to establish that spheroid cells from the patient material had a generally similar metabolism to spheroids from the stable line, however, they demonstrated more pronounced metabolic heterogeneity. Cultivation of spheroids under hypoxic conditions revealed a transition to a more glycolytic type of metabolism, which is expressed in an increase in the contribution of the free form of NAD(P)H to fluorescence decay.
CONCLUSION: The developed model of tumor spheroids from patients' glioblastomas in combination with the FLIM can serve as a tool to study characteristics of tumor metabolism and develop predictive tests to evaluate the effectiveness of antitumor therapy.
METHODS: A total of 50 patients with pathologically confirmed brain tumors (13 LGGs, 20 HGGs, and 17 meningiomas) were enrolled in this study. mtDNA was detected by using polymerase chain reaction (PCR) technique and later confirmed via Sanger DNA sequencing.
RESULTS: Overall, mtDNA was observed in 16 (32%) patients and it was significantly correlated with the type of tumor group and sex, being more common in the HGG group and in male patients.
CONCLUSION: The prevalence of mtDNA in Malaysian glioma and meningioma cases has been described for the first time and it was, indeed, comparable with previously published studies. This study provides initial insights into mtDNA in brain tumor and these findings can serve as new data for the global mitochondrial DNA mutations database.