Displaying all 18 publications

Abstract:
Sort:
  1. Elbashir H, Fathalla W, Mundada V, Iqbal M, Al Tawari AA, Chandratre S, et al.
    J Neuromuscul Dis, 2022;9(6):787-801.
    PMID: 36245386 DOI: 10.3233/JND-221528
    BACKGROUND: Duchenne muscular dystrophy (DMD) is a severe neuromuscular disorder which leads to progressive muscle degeneration and weakness. Most patients die from cardiac or respiratory failure. Gene transfer therapy offers a promising approach to treating this disorder.

    OBJECTIVE: Given the genetic disease burden, family size, and the high consanguinity rates in the Middle East, our objective is to address current practices and challenges of DMD patient care within two countries in this region, namely the United Arab Emirates and Kuwait, and to outline readiness for gene therapy.

    METHODS: An expert panel meeting was held to discuss the DMD patient journey, disease awareness, current management of DMD, challenges faced and recommendations for improvement. Opportunities and challenges for gene therapy in both countries were also deliberated. A pre-meeting survey was conducted, and the results were used to guide the discussion during the meeting.

    RESULTS: DMD awareness is poor resulting in a delay in referral and diagnosis of patients. Awareness and education initiatives, along with an interconnected referral system could improve early diagnosis. Genetic testing is available in both countries although coverage varies. Corticosteroid therapy is the standard of care however there is often a delay in treatment initiation. Patients with DMD should be diagnosed and managed by a multi-disciplinary team in centers of excellence for neuromuscular disorders. Key success factors to support the introduction of gene therapy include education and training, timely and accessible genetic testing and resolution of reimbursement and cost issues.

    CONCLUSION: There are many challenges facing the management of DMD patients in the United Arab Emirates and Kuwait and most likely other countries within the Middle East. Successful introduction of gene therapy to treat DMD will require careful planning, education, capacity building and prioritization of core initiatives.

    Matched MeSH terms: Genetic Therapy/methods
  2. Nguyen Thi YV, Ho TT, Caglayan S, Ramasamy TS, Chu DT
    Prog Mol Biol Transl Sci, 2024;203:287-300.
    PMID: 38360004 DOI: 10.1016/bs.pmbts.2023.12.013
    Diabetes is an ongoing global problem as it affects health of more than 537 million people around the world. Diabetes leaves many serious complications that affect patients and can cause death if not detected and treated promptly. Some of the complications of diabetes include impaired vascular system, increased risk of stroke, neurological diseases that cause pain and numbness, diseases related to the retina leading to blindness, and other complications affecting kidneys, heart failure, muscle weakness, muscle atrophy. All complications of diabetes seriously affect the health of patients. Recently, gene therapy has emerged as a viable treatment strategy for various diseases. DNA and RNA are among the target molecules that can change the structure and function of proteins and are effective methods of treating diseases, especially genetically inherited diseases. RNA therapeutics has attracted deep interest as it has been approved for application in the treatment of functional system disorders such as spinal muscular atrophy, and muscular dystrophy. In this review, we cover the types of RNA therapies considered for treatment of diabetes. In particular, we delve into the mechanism of action of RNA therapies for diabetes, and studies involving testing of these RNA therapies. Finally, we have highlighted the limitations of the current understanding in the mechanism of action of RNA therapies.
    Matched MeSH terms: Genetic Therapy/methods
  3. Chowdhury EH
    Expert Opin Drug Deliv, 2011 Mar;8(3):389-401.
    PMID: 21314230 DOI: 10.1517/17425247.2011.554817
    Current treatment of malignant tumors relies predominantly on chemotherapy delivering a single antineoplastic drug or a combination of two or more drugs intravenously. Problems with such treatments can include the killing of healthy cells, adverse side effects and chemoresistance. As cancer basically results from different types of mutation leading to the overexpression or suppression of the signaling cascades responsible for cancer cell survival and proliferation, tailor-made approaches capable of interfering precisely with those pathways are the potential revolutionary tools that could pave the way for highly effective cancer therapy.
    Matched MeSH terms: Genetic Therapy/methods*
  4. Liau KM, Ooi AG, Mah CH, Yong P, Kee LS, Loo CZ, et al.
    Curr Pharm Biotechnol, 2024;25(12):1500-1522.
    PMID: 37921129 DOI: 10.2174/0113892010258617231020062637
    CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a versatile technology that allows precise modification of genes. One of its most promising applications is in cancer treatment. By targeting and editing specific genes involved in cancer development and progression, CRISPR has the potential to become a powerful tool in the fight against cancer. This review aims to assess the recent progress in CRISPR technology for cancer research and to examine the obstacles and potential strategies to address them. The two most commonly used CRISPR systems for gene editing are CRISPR/Cas9 and CRISPR/Cas12a. CRISPR/Cas9 employs different repairing systems, including homologous recombination (HR) and nonhomologous end joining (NHEJ), to introduce precise modifications to the target genes. However, off-target effects and low editing efficiency are some of the main challenges associated with this technology. To overcome these issues, researchers are exploring new delivery methods and developing CRISPR/Cas systems with improved specificity. Moreover, there are ethical concerns surrounding using CRISPR in gene editing, including the potential for unintended consequences and the creation of genetically modified organisms. It is important to address these issues through rigorous testing and strict regulations. Despite these challenges, the potential benefits of CRISPR in cancer therapy cannot be overlooked. By introducing precise modifications to cancer cells, CRISPR could offer a targeted and effective treatment option for patients with different types of cancer. Further investigation and development of CRISPR technology are necessary to overcome the existing challenges and harness its full potential in cancer therapy.
    Matched MeSH terms: Genetic Therapy/methods
  5. Jothy SL, Chen Y, Vijayarathna S, Kanwar JR, Sasidharan S
    Curr Gene Ther, 2015;15(1):15-20.
    PMID: 25478696
    Radiotherapy plays an essential primary role in cancer patients. Regardless of its significant advances in treatment options, tumor recurrence and radio-resistance in cancer cells still occur in a high percentage of patients. Furthermore, the over expression of miRNAs accompanies the development of radio-resistant cancer cells. Consequently, miRNAs might serve as therapeutic targets for the treatment of radio-resistance in cancer cells. The findings of the current research also signify that the use of a natural anti-miRNA substance could inhibit specific miRNAs, and, concurrently, these natural remedies could exhibit radioprotective activity against the healthy cells during radiotherapy. Therefore, in this review, we have reported the association of miRNAs with radio-resistance and the potential uses of natural remedies as green gene therapeutic approaches, as well as radioprotectors against the adverse effects of irradiation on healthy cells during radiotherapy.
    Matched MeSH terms: Genetic Therapy/methods*
  6. Ismail R, Allaudin ZN, Lila MA
    Vaccine, 2012 Sep 7;30(41):5914-20.
    PMID: 22406276 DOI: 10.1016/j.vaccine.2012.02.061
    Gene therapy and vaccines are rapidly developing field in which recombinant nucleic acids are introduced in mammalian cells for enhancement, restoration, initiation or silencing biochemical function. Beside simplicity in manipulation and rapid manufacture process, plasmid DNA-based vaccines have inherent features that make them promising vaccine candidates in a variety of diseases. This present review focuses on the safety concern of the genetic elements of plasmid such as propagation and expression units as well as their host genome for the production of recombinant plasmid DNA. The highlighted issues will be beneficial in characterizing and manufacturing plasmid DNA for save clinical use. Manipulation of regulatory units of plasmid will have impact towards addressing the safety concerns raised in human vaccine applications. The gene revolution with plasmid DNA by alteration of their plasmid and production host genetics will be promising for safe delivery and obtaining efficient outcomes.
    Matched MeSH terms: Genetic Therapy/methods
  7. Maheshwari R, Tekade M, Sharma PA, Tekade RK
    Curr Pharm Des, 2015;21(30):4427-40.
    PMID: 26471319
    Cardiovascular diseases (CVDs), primarily myocardial infarction (MI), atherosclerosis, hypertension and congestive heart failure symbolize the foremost cause of death in almost all parts of the world. Besides the traditional therapeutic approaches for the management of CVDs, newer innovative strategies are also emerging on the horizon. Recently, gene silencing via small interfering RNA (siRNA) is one of the hot topics amongst various strategies involved in the management of CVDs. The siRNA mechanism involves natural catalytic processes to silence pathological genes that are overexpressed in a particular disease. Also the versatility of gene expression by siRNA deciphers a prospective tactic to down-regulate diseases associated gene, protein or receptor existing on a specific disease target. This article reviews the application of siRNA against CVDs with special emphasis on gene targets in combination with delivery systems such as cationic hydrogels, polyplexes, peptides, liposomes and dendrimers.
    Matched MeSH terms: Genetic Therapy/methods*
  8. Kaboli PJ, Rahmat A, Ismail P, Ling KH
    Pharmacol Res, 2015 Jul;97:104-21.
    PMID: 25958353 DOI: 10.1016/j.phrs.2015.04.015
    MicroRNAs (miRNA) are 21-23 nucleotide molecules not translated into proteins that bind and target the 3' untranslated regions of mRNA. These characteristics make them a possible tool for inhibiting protein translation. Different cellular pathways involved in cancer development, such as cellular proliferation, apoptosis, and migration, are regulated by miRNAs. The objective of this review is to discuss various miRNAs involved in breast cancer in detail as well as different therapeutic strategies from the clinic to industry. A comprehensive discussion is provided on various miRNAs involved in breast cancer development, progression, and metastasis as well as the roles, targets, and related therapeutic strategies of different miRNAs associated with breast cancer. miRNAs known to be clinically useful for the diagnosis and prognosis of breast cancer are also discussed. Different strategies and challenges, including nucleic acid-based (miRNA mimics, antagomiRs, and miRNA sponges) and drug-based (drug resistance, drugs/miRNA interaction, nanodelivery, and sensing systems) approaches to suppress specific oncogenes and/or activate target tumor suppressors are discussed. In contrast to other articles written on the same topic, this review focuses on the therapeutic and clinical value of miRNAs as well as their corresponding targets in order to explore how these strategies can overcome breast cancer, which is the second most frequent type of cancer worldwide. This review focuses on promising and validated miRNAs involved in breast cancer. In particular, two miRNAs, miR-21 and miR-34, are discussed as the most promising targets for RNA-based therapy in non-invasive and invasive breast cancer, respectively. Finally, relevant and commercialized therapeutic strategies are highlighted.
    Matched MeSH terms: Genetic Therapy/methods*
  9. Lazarev VN, Polina NF, Shkarupeta MM, Kostrjukova ES, Vassilevski AA, Kozlov SA, et al.
    Antimicrob Agents Chemother, 2011 Nov;55(11):5367-9.
    PMID: 21876050 DOI: 10.1128/AAC.00449-11
    Spider venoms are vast natural pharmacopoeias selected by evolution. The venom of the ant spider Lachesana tarabaevi contains a wide variety of antimicrobial peptides. We tested six of them (latarcins 1, 2a, 3a, 4b, 5, and cytoinsectotoxin 1a) for their ability to suppress Chlamydia trachomatis infection. HEK293 cells were transfected with plasmid vectors harboring the genes of the selected peptides. Controlled expression of the transgenes led to a significant decrease of C. trachomatis viability inside the infected cells.
    Matched MeSH terms: Genetic Therapy/methods
  10. Jeevanandam J, Pal K, Danquah MK
    Biochimie, 2019 Feb;157:38-47.
    PMID: 30408502 DOI: 10.1016/j.biochi.2018.11.001
    Viruses are considered as natural nanomaterials as they are in the size range of 20-500 nm with a genetical material either DNA or RNA, which is surrounded by a protein coat capsid. Recently, the field of virus nanotechnology is gaining significant attention from researchers. Attention is given to the utilization of viruses as nanomaterials for medical, biotechnology and energy applications. Removal of genetic material from the viral capsid creates empty capsid for drug incorporation and coating the capsid protein crystals with antibodies, enzymes or aptamers will enhance their targeted drug deliver efficiency. Studies reported that these virus-like nanoparticles have been used in delivering drugs for cancer. It is also used in imaging and sensory applications for various diseases. However, there is reservation among researchers to utilize virus-like nanoparticles in targeted delivery of genes in gene therapy, as there is a possibility of using virus-like nanoparticles for targeted gene delivery. In addition, other biomedical applications that are explored using virus-like nanoparticles and the probable mechanism of delivering genes.
    Matched MeSH terms: Genetic Therapy/methods*
  11. Kalidasan V, Ng WH, Ishola OA, Ravichantar N, Tan JJ, Das KT
    Sci Rep, 2021 Sep 28;11(1):19265.
    PMID: 34584147 DOI: 10.1038/s41598-021-98657-7
    Gene therapy revolves around modifying genetic makeup by inserting foreign nucleic acids into targeted cells via gene delivery methods to treat a particular disease. While the genes targeted play a key role in gene therapy, the gene delivery system used is also of utmost importance as it determines the success of gene therapy. As primary cells and stem cells are often the target cells for gene therapy in clinical trials, the delivery system would need to be robust, and viral-based entries such as lentiviral vectors work best at transporting the transgene into the cells. However, even within lentiviral vectors, several parameters can affect the functionality of the delivery system. Using cardiac-derived c-kit expressing cells (CCs) as a model system, this study aims to optimize lentiviral production by investigating various experimental factors such as the generation of the lentiviral system, concentration method, and type of selection marker. Our findings showed that the 2nd generation system with pCMV-dR8.2 dvpr as the packaging plasmid produced a 7.3-fold higher yield of lentiviral production compared to psPAX2. Concentrating the virus with ultracentrifuge produced a higher viral titer at greater than 5 × 105 infectious unit values/ml (IFU/ml). And lastly, the minimum inhibitory concentration (MIC) of puromycin selection marker was 10 μg/mL and 7 μg/mL for HEK293T and CCs, demonstrating the suitability of antibiotic selection for all cell types. This encouraging data can be extrapolated and applied to other difficult-to-transfect cells, such as different types of stem cells or primary cells.
    Matched MeSH terms: Genetic Therapy/methods*
  12. Najafi S, Tan SC, Aghamiri S, Raee P, Ebrahimi Z, Jahromi ZK, et al.
    Biomed Pharmacother, 2022 Apr;148:112743.
    PMID: 35228065 DOI: 10.1016/j.biopha.2022.112743
    Viral infections are a common cause of morbidity worldwide. The emergence of Coronavirus Disease 2019 (COVID-19) has led to more attention to viral infections and finding novel therapeutics. The CRISPR-Cas9 system has been recently proposed as a potential therapeutic tool for the treatment of viral diseases. Here, we review the research progress in the use of CRISPR-Cas technology for treating viral infections, as well as the strategies for improving the delivery of this gene-editing tool in vivo. Key challenges that hinder the widespread clinical application of CRISPR-Cas9 technology are also discussed, and several possible directions for future research are proposed.
    Matched MeSH terms: Genetic Therapy/methods*
  13. Vijayarathna S, Gothai S, Jothy SL, Chen Y, Kanwar JR, Sasidharan S
    Asian Pac J Cancer Prev, 2015;16(17):7435-9.
    PMID: 26625740
    A failure of a cell to self destruct has long been associated with cancer progression and development. The fact that tumour cells may not instigate cell arrest or activate cell death mechanisms upon cancer drug delivery is a major concern. Autophagy is a mechanism whereby cell material can be engulfed and digested while apoptosis is a self-killing mechanism, both capable of hindering multiplication after cell injury. In particular situations, autophagy and apoptosis seem to co-exist simultaneously or interdependently with the aid of mutual proteins. This review covers roles of microRNAs and chemopreventive agents and makes an attempt at outlining possible partnerships in maximizing cancer cell death with minimal normal cell damage.
    Matched MeSH terms: Genetic Therapy/methods*
  14. Hasbullah HH, Musa M
    Int J Mol Sci, 2021 Nov 03;22(21).
    PMID: 34769370 DOI: 10.3390/ijms222111941
    Colorectal cancer (CRC) is the third most commonly diagnosed malignancy worldwide and is responsible as one of the main causes of mortality in both men and women. Despite massive efforts to raise public awareness on early screening and significant advancements in the treatment for CRC, the majority of cases are still being diagnosed at the advanced stage. This contributes to low survivability due to this cancer. CRC patients present various genetic changes and epigenetic modifications. The most common genetic alterations associated with CRC are p53 and KRAS mutations. Gene therapy targeting defect genes such as TP53 (tumor suppressor gene encodes for p53) and KRAS (oncogene) in CRC potentially serves as an alternative treatment avenue for the disease in addition to the standard therapy. For the last decade, significant developments have been seen in gene therapy for translational purposes in treating various cancers. This includes the development of vectors as delivery vehicles. Despite the optimism revolving around targeted gene therapy for cancer treatment, it also has various limitations, such as a lack of availability of related technology, high cost of the involved procedures, and ethical issues. This article will provide a review on the potentials and challenges of gene therapy targeting p53 and KRAS for the treatment of CRC.
    Matched MeSH terms: Genetic Therapy/methods*
  15. Bakhtiar A, Sayyad M, Rosli R, Maruyama A, Chowdhury EH
    Curr Gene Ther, 2014;14(4):247-57.
    PMID: 25039616
    Conventional therapies for malignant cancer such as chemotherapy and radiotherapy are associated with poor survival rates owing to the development of cellular resistance to cancer drugs and the lack of targetability, resulting in unwanted adverse effects on healthy cells and necessitating the lowering of therapeutic dose with consequential lower efficacy of the treatment. Gene therapy employing different types of viral and non-viral carriers to transport gene(s) of interest and facilitating production of the desirable therapeutic protein(s) has tremendous prospects in cancer treatments due to the high-level of specificity in therapeutic action of the expressed protein(s) with diminished off-target effects, although cancer cell-specific delivery of transgene(s) still poses some challenges to be addressed. Depending on the potential therapeutic target genes, cancer gene therapy could be categorized into tumor suppressor gene replacement therapy, immune gene therapy and enzyme- or prodrug-based therapy. This review would shed light on the current progress of delivery of potentially therapeutic genes into various cancer cells in vitro and animal models utilizing a variety of viral and non-viral vectors.
    Matched MeSH terms: Genetic Therapy/methods*
  16. Lim KL, Teoh HK, Choong PF, Teh HX, Cheong SK, Kamarul T
    Expert Opin Biol Ther, 2016 07;16(7):941-51.
    PMID: 27070264 DOI: 10.1517/14712598.2016.1174211
    INTRODUCTION: Cancer is a disease with genetic and epigenetic origins, and the possible effects of reprogramming cancer cells using the defined sets of transcription factors remain largely uninvestigated. In the handful of publications available so far, findings have shown that reprogramming cancer cells changed the characteristics of the cells to differ from the parental cancer cells. These findings indicated the possibility of utilizing reprogramming technology to create a disease model in the laboratory to be used in studying the molecular pathogenesis or for drug screening of a particular cancer model.

    AREAS COVERED: Despite numerous methods employed in generating induced pluripotent stem cells (iPSCs) from cancer cells only a few studies have successfully reprogrammed malignant human cells. In this review we will provide an overview on i) methods to reprogram cancer cells, ii) characterization of the reprogrammed cancer cells, and iii) the differential effects of reprogramming on malignancy, epigenetics and response of the cancer cells to chemotherapeutic agents.

    EXPERT OPINION: Continued technical progress in cancer cell reprogramming technology will be instrumental for more refined in vitro disease models and ultimately for the development of directed and personalized therapy for cancer patients in the future.

    Matched MeSH terms: Genetic Therapy/methods*
  17. Rasouli M, Ahmad Z, Omar AR, Allaudin ZN
    BMC Biotechnol, 2011 Nov 03;11:99.
    PMID: 22047106 DOI: 10.1186/1472-6750-11-99
    BACKGROUND: Diabetes mellitus is a complicated disease with a pathophysiology that includes hyperinsulinemia, hyperglycemia and other metabolic impairments leading to many clinical complications. It is necessary to develop appropriate treatments to manage the disease and reduce possible acute and chronic side effects. The advent of gene therapy has generated excitement in the medical world for the possible application of gene therapy in the treatment of diabetes. The glucagon-like peptide-1 (GLP-1) promoter, which is recognised by gut L-cells, is an appealing candidate for gene therapy purposes. The specific properties of L-cells suggest that L-cells and the GLP-1 promoter would be useful for diabetes therapy approaches.

    RESULTS: In this study, L-cells were isolated from a primary intestinal cell line to create suitable target cells for insulin expression studies. The isolated cells displayed L-cell properties and were therefore used as an L-cell surrogate. Next, the isolated L-cells were transfected with the recombinant plasmid consisting of an insulin gene located downstream of the GLP-1 promoter. The secretion tests revealed that an increase in glucose concentration from 5 mM to 25 mM induced insulin gene expression in the L-cells by 2.7-fold. Furthermore, L-cells quickly responded to the glucose stimulation; the amount of insulin protein increased 2-fold in the first 30 minutes and then reached a plateau after 90 minutes.

    CONCLUSION: Our data showed that L-cells efficiently produced the mature insulin protein. In addition, the insulin protein secretion was positively regulated with glucose induction. In conclusion, GLP-1 promoter and L-cell could be potential candidates for diabetes gene therapy agents.

    Matched MeSH terms: Genetic Therapy/methods
  18. Lazarev VN, Shkarupeta MM, Titova GA, Kostrjukova ES, Akopian TA, Govorun VM
    Biochem Biophys Res Commun, 2005 Dec 16;338(2):946-50.
    PMID: 16246304
    A plasmid construct was designed in which the gene of antimicrobial peptide melittin is controlled by the tetracycline-responsive promoter of human cytomegalovirus, aided by a constitutively expressed trans-activator protein gene. Its vaginal administration and induction of melittin gene transcription with doxycycline markedly suppressed subsequent genital tract infection of mice by Mycoplasma hominis and Chlamydia trachomatis. At least half of the melittin-protected animals proved free of either pathogen within 3-4 weeks. Recombinant plasmids expressing genes of antimicrobial peptides hold much promise as agents for prevention and control of urogenital latent infections.
    Matched MeSH terms: Genetic Therapy/methods
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links