Displaying publications 1 - 20 of 63 in total

Abstract:
Sort:
  1. Memari N, Ramli AR, Bin Saripan MI, Mashohor S, Moghbel M
    PLoS One, 2017;12(12):e0188939.
    PMID: 29228036 DOI: 10.1371/journal.pone.0188939
    The structure and appearance of the blood vessel network in retinal fundus images is an essential part of diagnosing various problems associated with the eyes, such as diabetes and hypertension. In this paper, an automatic retinal vessel segmentation method utilizing matched filter techniques coupled with an AdaBoost classifier is proposed. The fundus image is enhanced using morphological operations, the contrast is increased using contrast limited adaptive histogram equalization (CLAHE) method and the inhomogeneity is corrected using Retinex approach. Then, the blood vessels are enhanced using a combination of B-COSFIRE and Frangi matched filters. From this preprocessed image, different statistical features are computed on a pixel-wise basis and used in an AdaBoost classifier to extract the blood vessel network inside the image. Finally, the segmented images are postprocessed to remove the misclassified pixels and regions. The proposed method was validated using publicly accessible Digital Retinal Images for Vessel Extraction (DRIVE), Structured Analysis of the Retina (STARE) and Child Heart and Health Study in England (CHASE_DB1) datasets commonly used for determining the accuracy of retinal vessel segmentation methods. The accuracy of the proposed segmentation method was comparable to other state of the art methods while being very close to the manual segmentation provided by the second human observer with an average accuracy of 0.972, 0.951 and 0.948 in DRIVE, STARE and CHASE_DB1 datasets, respectively.
    Matched MeSH terms: Fundus Oculi*
  2. Keah SH, Chng KS
    Malays Fam Physician, 2006;1(1):39.
    PMID: 26998211
    Matched MeSH terms: Fundus Oculi
  3. Lim TH, Wai YZ, Chong JC
    J Med Case Rep, 2021 May 12;15(1):267.
    PMID: 33980269 DOI: 10.1186/s13256-021-02826-1
    BACKGROUND: Frosted branch angiitis (FBA) is an uncommon ocular sign with multiple causes. With the recent outbreak of coronavirus disease 2019 (COVID-19), many cases of ocular manifestation in association with this disease have been reported. However, as yet we have no complete understanding of this condition. We report here the first case of FBA in a human immunodeficiency virus-infected patient with coexisting cytomegalovirus (CMV) and COVID-19 infection.

    CASE PRESENTATION: A 33-year-old Malay man with underlying acquired immunodeficiency syndrome receiving highly active antiretroviral therapy was referred to the Opthalmology Department with complaints of blurry vision for the past 2 months. He had tested positive for and been diagnosed with COVID-19 1 month previously. Clinical examination of the fundus revealed extensive perivascular sheathing of both the artery and vein suggestive of FBA in the right eye. Laboratory testing of nasal swabs for COVID-19 polymerase chain reaction (PCR) and serum CMV antibody were positive. The patient was then admitted to the COVID-19 ward and treated with intravenous ganciclovir.

    CONCLUSION: Clinicians should be aware of and take the necessary standard precautions for possible coexistence of COVID-19 in an immunocompromised patient presenting with blurred vision, eye redness, dry eye and foreign body sensation despite the absence of clinical features suggestive of COVID-19. Whether FBA is one of the ocular signs of co-infection of COVID-19 and CMV remains unknown. Further studies are needed to provide more information on ocular signs presented in patients with concurrent COVID-19 and CMV infections.

    Matched MeSH terms: Fundus Oculi
  4. Tang MCS, Teoh SS, Ibrahim H, Embong Z
    Sensors (Basel), 2021 Aug 06;21(16).
    PMID: 34450766 DOI: 10.3390/s21165327
    Proliferative Diabetic Retinopathy (PDR) is a severe retinal disease that threatens diabetic patients. It is characterized by neovascularization in the retina and the optic disk. PDR clinical features contain highly intense retinal neovascularization and fibrous spreads, leading to visual distortion if not controlled. Different image processing techniques have been proposed to detect and diagnose neovascularization from fundus images. Recently, deep learning methods are getting popular in neovascularization detection due to artificial intelligence advancement in biomedical image processing. This paper presents a semantic segmentation convolutional neural network architecture for neovascularization detection. First, image pre-processing steps were applied to enhance the fundus images. Then, the images were divided into small patches, forming a training set, a validation set, and a testing set. A semantic segmentation convolutional neural network was designed and trained to detect the neovascularization regions on the images. Finally, the network was tested using the testing set for performance evaluation. The proposed model is entirely automated in detecting and localizing neovascularization lesions, which is not possible with previously published methods. Evaluation results showed that the model could achieve accuracy, sensitivity, specificity, precision, Jaccard similarity, and Dice similarity of 0.9948, 0.8772, 0.9976, 0.8696, 0.7643, and 0.8466, respectively. We demonstrated that this model could outperform other convolutional neural network models in neovascularization detection.
    Matched MeSH terms: Fundus Oculi
  5. Ramli R, Idris MYI, Hasikin K, A Karim NK, Abdul Wahab AW, Ahmedy I, et al.
    J Healthc Eng, 2017;2017:1489524.
    PMID: 29204257 DOI: 10.1155/2017/1489524
    Retinal image registration is important to assist diagnosis and monitor retinal diseases, such as diabetic retinopathy and glaucoma. However, registering retinal images for various registration applications requires the detection and distribution of feature points on the low-quality region that consists of vessels of varying contrast and sizes. A recent feature detector known as Saddle detects feature points on vessels that are poorly distributed and densely positioned on strong contrast vessels. Therefore, we propose a multiresolution difference of Gaussian pyramid with Saddle detector (D-Saddle) to detect feature points on the low-quality region that consists of vessels with varying contrast and sizes. D-Saddle is tested on Fundus Image Registration (FIRE) Dataset that consists of 134 retinal image pairs. Experimental results show that D-Saddle successfully registered 43% of retinal image pairs with average registration accuracy of 2.329 pixels while a lower success rate is observed in other four state-of-the-art retinal image registration methods GDB-ICP (28%), Harris-PIIFD (4%), H-M (16%), and Saddle (16%). Furthermore, the registration accuracy of D-Saddle has the weakest correlation (Spearman) with the intensity uniformity metric among all methods. Finally, the paired t-test shows that D-Saddle significantly improved the overall registration accuracy of the original Saddle.
    Matched MeSH terms: Fundus Oculi
  6. Chung KM
    Optom Vis Sci, 1999 Feb;76(2):121-6.
    PMID: 10082059
    The clinical significance of fundus magnification produced during direct ophthalmoscopy of the corrected eye has not been fully established. Based on paraxial ray tracing, fundus magnification (M) can be defined by a simple equation, M = (K'/4) x (Fs/K), where K' is the dioptric axial power of the eye, Fs is the correcting thin lens power and K is the ocular ametropia. Refractive myopes produce greater fundus magnification than axial myopes, whereas refractive hyperopes produce lower fundus magnification than axial hyperopes. If we assume 15 x fundus magnification as our standard magnification for an emmetropic reduced eye, then wearing glasses or putting the focusing lens at or close to the anterior focus of the eye is able to achieve the standard magnification for axial myope and axial hyperope, whereas wearing contact lenses is able to achieve the standard magnification for refractive myope and refractive hyperope. Vertex distance has greater influence on fundus magnification produced during direct ophthalmoscopy than other funduscopic techniques. In conclusion, the newly defined formula has clinical applications during direct ophthalmoscopy.
    Matched MeSH terms: Fundus Oculi*
  7. Maheshwari S, Pachori RB, Kanhangad V, Bhandary SV, Acharya UR
    Comput Biol Med, 2017 Sep 01;88:142-149.
    PMID: 28728059 DOI: 10.1016/j.compbiomed.2017.06.017
    Glaucoma is one of the leading causes of permanent vision loss. It is an ocular disorder caused by increased fluid pressure within the eye. The clinical methods available for the diagnosis of glaucoma require skilled supervision. They are manual, time consuming, and out of reach of common people. Hence, there is a need for an automated glaucoma diagnosis system for mass screening. In this paper, we present a novel method for an automated diagnosis of glaucoma using digital fundus images. Variational mode decomposition (VMD) method is used in an iterative manner for image decomposition. Various features namely, Kapoor entropy, Renyi entropy, Yager entropy, and fractal dimensions are extracted from VMD components. ReliefF algorithm is used to select the discriminatory features and these features are then fed to the least squares support vector machine (LS-SVM) for classification. Our proposed method achieved classification accuracies of 95.19% and 94.79% using three-fold and ten-fold cross-validation strategies, respectively. This system can aid the ophthalmologists in confirming their manual reading of classes (glaucoma or normal) using fundus images.
    Matched MeSH terms: Fundus Oculi*
  8. Koh JEW, Acharya UR, Hagiwara Y, Raghavendra U, Tan JH, Sree SV, et al.
    Comput Biol Med, 2017 05 01;84:89-97.
    PMID: 28351716 DOI: 10.1016/j.compbiomed.2017.03.008
    Vision is paramount to humans to lead an active personal and professional life. The prevalence of ocular diseases is rising, and diseases such as glaucoma, Diabetic Retinopathy (DR) and Age-related Macular Degeneration (AMD) are the leading causes of blindness in developed countries. Identifying these diseases in mass screening programmes is time-consuming, labor-intensive and the diagnosis can be subjective. The use of an automated computer aided diagnosis system will reduce the time taken for analysis and will also reduce the inter-observer subjective variabilities in image interpretation. In this work, we propose one such system for the automatic classification of normal from abnormal (DR, AMD, glaucoma) images. We had a total of 404 normal and 1082 abnormal fundus images in our database. As the first step, 2D-Continuous Wavelet Transform (CWT) decomposition on the fundus images of two classes was performed. Subsequently, energy features and various entropies namely Yager, Renyi, Kapoor, Shannon, and Fuzzy were extracted from the decomposed images. Then, adaptive synthetic sampling approach was applied to balance the normal and abnormal datasets. Next, the extracted features were ranked according to the significances using Particle Swarm Optimization (PSO). Thereupon, the ranked and selected features were used to train the random forest classifier using stratified 10-fold cross validation. Overall, the proposed system presented a performance rate of 92.48%, and a sensitivity and specificity of 89.37% and 95.58% respectively using 15 features. This novel system shows promise in detecting abnormal fundus images, and hence, could be a valuable adjunct eye health screening tool that could be employed in polyclinics, and thereby reduce the workload of specialists at hospitals.
    Matched MeSH terms: Fundus Oculi*
  9. Lim WX, Chen Z
    Med Biol Eng Comput, 2024 Aug;62(8):2571-2583.
    PMID: 38649629 DOI: 10.1007/s11517-024-03093-0
    Diabetic retinopathy disease contains lesions (e.g., exudates, hemorrhages, and microaneurysms) that are minute to the naked eye. Determining the lesions at pixel level poses a challenge as each pixel does not reflect any semantic entities. Furthermore, the computational cost of inspecting each pixel is expensive because the number of pixels is high even at low resolution. In this work, we propose a hybrid image processing method. Simple Linear Iterative Clustering with Gaussian Filter (SLIC-G) for the purpose of overcoming pixel constraints. The SLIC-G image processing method is divided into two stages: (1) simple linear iterative clustering superpixel segmentation and (2) Gaussian smoothing operation. In such a way, a large number of new transformed datasets are generated and then used for model training. Finally, two performance evaluation metrics that are suitable for imbalanced diabetic retinopathy datasets were used to validate the effectiveness of the proposed SLIC-G. The results indicate that, in comparison to prior published works' results, the proposed SLIC-G shows better performance on image classification of class imbalanced diabetic retinopathy datasets. This research reveals the importance of image processing and how it influences the performance of deep learning networks. The proposed SLIC-G enhances pre-trained network performance by eliminating the local redundancy of an image, which preserves local structures, but avoids over-segmented, noisy clips. It closes the research gap by introducing the use of superpixel segmentation and Gaussian smoothing operation as image processing methods in diabetic retinopathy-related tasks.
    Matched MeSH terms: Fundus Oculi*
  10. Maheshwari S, Kanhangad V, Pachori RB, Bhandary SV, Acharya UR
    Comput Biol Med, 2019 Feb;105:72-80.
    PMID: 30590290 DOI: 10.1016/j.compbiomed.2018.11.028
    BACKGROUND AND OBJECTIVE: Glaucoma is a ocular disorder which causes irreversible damage to the retinal nerve fibers. The diagnosis of glaucoma is important as it may help to slow down the progression. The available clinical methods and imaging techniques are manual and require skilled supervision. For the purpose of mass screening, an automated system is needed for glaucoma diagnosis which is fast, accurate, and helps in reducing the burden on experts.

    METHODS: In this work, we present a bit-plane slicing (BPS) and local binary pattern (LBP) based novel approach for glaucoma diagnosis. Firstly, our approach separates the red (R), green (G), and blue (B) channels from the input color fundus image and splits the channels into bit planes. Secondly, we extract LBP based statistical features from each of the bit planes of the individual channels. Thirdly, these features from the individual channels are fed separately to three different support vector machines (SVMs) for classification. Finally, the decisions from the individual SVMs are fused at the decision level to classify the input fundus image into normal or glaucoma class.

    RESULTS: Our experimental results suggest that the proposed approach is effective in discriminating normal and glaucoma cases with an accuracy of 99.30% using 10-fold cross validation.

    CONCLUSIONS: The developed system is ready to be tested on large and diverse databases and can assist the ophthalmologists in their daily screening to confirm their diagnosis, thereby increasing accuracy of diagnosis.

    Matched MeSH terms: Fundus Oculi
  11. Ooi AZH, Embong Z, Abd Hamid AI, Zainon R, Wang SL, Ng TF, et al.
    Sensors (Basel), 2021 Sep 24;21(19).
    PMID: 34640698 DOI: 10.3390/s21196380
    Optometrists, ophthalmologists, orthoptists, and other trained medical professionals use fundus photography to monitor the progression of certain eye conditions or diseases. Segmentation of the vessel tree is an essential process of retinal analysis. In this paper, an interactive blood vessel segmentation from retinal fundus image based on Canny edge detection is proposed. Semi-automated segmentation of specific vessels can be done by simply moving the cursor across a particular vessel. The pre-processing stage includes the green color channel extraction, applying Contrast Limited Adaptive Histogram Equalization (CLAHE), and retinal outline removal. After that, the edge detection techniques, which are based on the Canny algorithm, will be applied. The vessels will be selected interactively on the developed graphical user interface (GUI). The program will draw out the vessel edges. After that, those vessel edges will be segmented to bring focus on its details or detect the abnormal vessel. This proposed approach is useful because different edge detection parameter settings can be applied to the same image to highlight particular vessels for analysis or presentation.
    Matched MeSH terms: Fundus Oculi
  12. Kipli K, Hoque ME, Lim LT, Mahmood MH, Sahari SK, Sapawi R, et al.
    Comput Math Methods Med, 2018;2018:4019538.
    PMID: 30065780 DOI: 10.1155/2018/4019538
    Digital image processing is one of the most widely used computer vision technologies in biomedical engineering. In the present modern ophthalmological practice, biomarkers analysis through digital fundus image processing analysis greatly contributes to vision science. This further facilitates developments in medical imaging, enabling this robust technology to attain extensive scopes in biomedical engineering platform. Various diagnostic techniques are used to analyze retinal microvasculature image to enable geometric features measurements such as vessel tortuosity, branching angles, branching coefficient, vessel diameter, and fractal dimension. These extracted markers or characterized fundus digital image features provide insights and relates quantitative retinal vascular topography abnormalities to various pathologies such as diabetic retinopathy, macular degeneration, hypertensive retinopathy, transient ischemic attack, neovascular glaucoma, and cardiovascular diseases. Apart from that, this noninvasive research tool is automated, allowing it to be used in large-scale screening programs, and all are described in this present review paper. This paper will also review recent research on the image processing-based extraction techniques of the quantitative retinal microvascular feature. It mainly focuses on features associated with the early symptom of transient ischemic attack or sharp stroke.
    Matched MeSH terms: Fundus Oculi
  13. Shariff S, Teo KSS, Hitam WHW
    Rom J Ophthalmol, 2021 6 29;65(2):196-200.
    PMID: 34179588 DOI: 10.22336/rjo.2021.39
    Objective: To report a case of choroidal mass secondary to mucinous cystadenocarcinoma of ovary in a young woman. Method: A case report. Result: A 21-year-old woman presented with insidious painless, progressive, central scotoma of the right eye for 5 weeks. She was disease free for 9 years after she underwent right salpingo-oophorectomy for her mucinous cystadenocarcinoma of right ovary. She completed 6 cycles of chemotherapy regimen. On presentation, her visual acuity was counting finger in the right eye and 6/ 6 in the left eye. Both anterior segments were unremarkable. Fundus examination of the right eye showed multiple choroidal masses with the largest in the temporal to fovea. Generally, she was well. Her tumor markers were raised. Urgent Computed Tomography (CT) Scan of thorax, abdomen and pelvis showed multiple distance metastases. She was referred to the gynecology team. She was scheduled for chemotherapy. However, she defaulted the treatment. 3 months after that, her general condition deteriorated. She developed bilateral internal jugular vein thrombosis and massive right pleural effusion. She passed away due to that complication. Conclusion: Choroidal metastasis from primary ovary carcinoma is very rare. Ocular symptoms can be the first presenting features to a life-threatening condition.
    Matched MeSH terms: Fundus Oculi
  14. Koh JEW, Ng EYK, Bhandary SV, Hagiwara Y, Laude A, Acharya UR
    Comput Biol Med, 2018 01 01;92:204-209.
    PMID: 29227822 DOI: 10.1016/j.compbiomed.2017.11.019
    Untreated age-related macular degeneration (AMD), diabetic retinopathy (DR), and glaucoma may lead to irreversible vision loss. Hence, it is essential to have regular eye screening to detect these eye diseases at an early stage and to offer treatment where appropriate. One of the simplest, non-invasive and cost-effective techniques to screen the eyes is by using fundus photo imaging. But, the manual evaluation of fundus images is tedious and challenging. Further, the diagnosis made by ophthalmologists may be subjective. Therefore, an objective and novel algorithm using the pyramid histogram of visual words (PHOW) and Fisher vectors is proposed for the classification of fundus images into their respective eye conditions (normal, AMD, DR, and glaucoma). The proposed algorithm extracts features which are represented as words. These features are built and encoded into a Fisher vector for classification using random forest classifier. This proposed algorithm is validated with both blindfold and ten-fold cross-validation techniques. An accuracy of 90.06% is achieved with the blindfold method, and highest accuracy of 96.79% is obtained with ten-fold cross-validation. The highest classification performance of our system shows the potential of deploying it in polyclinics to assist healthcare professionals in their initial diagnosis of the eye. Our developed system can reduce the workload of ophthalmologists significantly.
    Matched MeSH terms: Fundus Oculi
  15. Ganesan K, Acharya RU, Chua CK, Laude A
    Proc Inst Mech Eng H, 2014 Sep;228(9):962-70.
    PMID: 25234036 DOI: 10.1177/0954411914550847
    Identification of retinal landmarks is an important step in the extraction of anomalies in retinal fundus images. In the current study, we propose a technique to identify and localize the position of macula and hence the fovea avascular zone, in colour fundus images. The proposed method, based on varying blur scales in images, is independent of the location of other anatomical landmarks present in the fundus images. Experimental results have been provided using the open database MESSIDOR by validating our segmented regions using the dice coefficient, with ground truth segmentation provided by a human expert. Apart from testing the images on the entire MESSIDOR database, the proposed technique was also validated using 50 normal and 50 diabetic retinopathy chosen digital fundus images from the same database. A maximum overlap accuracy of 89.6%-93.8% and locational accuracy of 94.7%-98.9% was obtained for identification and localization of the fovea.
    Matched MeSH terms: Fundus Oculi*
  16. Ahmad Fadzil M, Ngah NF, George TM, Izhar LI, Nugroho H, Adi Nugroho H
    PMID: 21097305 DOI: 10.1109/IEMBS.2010.5628041
    Diabetic retinopathy (DR) is a sight threatening complication due to diabetes mellitus that affects the retina. At present, the classification of DR is based on the International Clinical Diabetic Retinopathy Disease Severity. In this paper, FAZ enlargement with DR progression is investigated to enable a new and an effective grading protocol DR severity in an observational clinical study. The performance of a computerised DR monitoring and grading system that digitally analyses colour fundus image to measure the enlargement of FAZ and grade DR is evaluated. The range of FAZ area is optimised to accurately determine DR severity stage and progression stages using a Gaussian Bayes classifier. The system achieves high accuracies of above 96%, sensitivities higher than 88% and specificities higher than 96%, in grading of DR severity. In particular, high sensitivity (100%), specificity (>98%) and accuracy (99%) values are obtained for No DR (normal) and Severe NPDR/PDR stages. The system performance indicates that the DR system is suitable for early detection of DR and for effective treatment of severe cases.
    Matched MeSH terms: Fundus Oculi*
  17. Ahmad Fadzil MH, Izhar LI, Nugroho HA
    Comput Biol Med, 2010 Jul;40(7):657-64.
    PMID: 20573343 DOI: 10.1016/j.compbiomed.2010.05.004
    Monitoring FAZ area enlargement enables physicians to monitor progression of the DR. At present, it is difficult to discern the FAZ area and to measure its enlargement in an objective manner using digital fundus images. A semi-automated approach for determination of FAZ using color images has been developed. Here, a binary map of retinal blood vessels is computer generated from the digital fundus image to determine vessel ends and pathologies surrounding FAZ for area analysis. The proposed method is found to achieve accuracies from 66.67% to 98.69% compared to accuracies of 18.13-95.07% obtained by manual segmentation of FAZ regions from digital fundus images.
    Matched MeSH terms: Fundus Oculi*
  18. Reza AW, Eswaran C, Dimyati K
    J Med Syst, 2011 Dec;35(6):1491-501.
    PMID: 20703768 DOI: 10.1007/s10916-009-9426-y
    Due to increasing number of diabetic retinopathy cases, ophthalmologists are experiencing serious problem to automatically extract the features from the retinal images. Optic disc (OD), exudates, and cotton wool spots are the main features of fundus images which are used for diagnosing eye diseases, such as diabetic retinopathy and glaucoma. In this paper, a new algorithm for the extraction of these bright objects from fundus images based on marker-controlled watershed segmentation is presented. The proposed algorithm makes use of average filtering and contrast adjustment as preprocessing steps. The concept of the markers is used to modify the gradient before the watershed transformation is applied. The performance of the proposed algorithm is evaluated using the test images of STARE and DRIVE databases. It is shown that the proposed method can yield an average sensitivity value of about 95%, which is comparable to those obtained by the known methods.
    Matched MeSH terms: Fundus Oculi*
  19. Raghavendra U, Gudigar A, Bhandary SV, Rao TN, Ciaccio EJ, Acharya UR
    J Med Syst, 2019 Jul 30;43(9):299.
    PMID: 31359230 DOI: 10.1007/s10916-019-1427-x
    Glaucoma is a type of eye condition which may result in partial or consummate vision loss. Higher intraocular pressure is the leading cause for this condition. Screening for glaucoma and early detection can avert vision loss. Computer aided diagnosis (CAD) is an automated process with the potential to identify glaucoma early through quantitative analysis of digital fundus images. Preparing an effective model for CAD requires a large database. This study presents a CAD tool for the precise detection of glaucoma using a machine learning approach. An autoencoder is trained to determine effective and important features from fundus images. These features are used to develop classes of glaucoma for testing. The method achieved an F - measure value of 0.95 utilizing 1426 digital fundus images (589 control and 837 glaucoma). The efficacy of the system is evident, and is suggestive of its possible utility as an additional tool for verification of clinical decisions.
    Matched MeSH terms: Fundus Oculi*
  20. Acharya UR, Mookiah MR, Koh JE, Tan JH, Bhandary SV, Rao AK, et al.
    Comput Biol Med, 2016 08 01;75:54-62.
    PMID: 27253617 DOI: 10.1016/j.compbiomed.2016.04.015
    Posterior Segment Eye Diseases (PSED) namely Diabetic Retinopathy (DR), glaucoma and Age-related Macular Degeneration (AMD) are the prime causes of vision loss globally. Vision loss can be prevented, if these diseases are detected at an early stage. Structural abnormalities such as changes in cup-to-disc ratio, Hard Exudates (HE), drusen, Microaneurysms (MA), Cotton Wool Spots (CWS), Haemorrhages (HA), Geographic Atrophy (GA) and Choroidal Neovascularization (CNV) in PSED can be identified by manual examination of fundus images by clinicians. However, manual screening is labour-intensive, tiresome and time consuming. Hence, there is a need to automate the eye screening. In this work Bi-dimensional Empirical Mode Decomposition (BEMD) technique is used to decompose fundus images into 2D Intrinsic Mode Functions (IMFs) to capture variations in the pixels due to morphological changes. Further, various entropy namely Renyi, Fuzzy, Shannon, Vajda, Kapur and Yager and energy features are extracted from IMFs. These extracted features are ranked using Chernoff Bound and Bhattacharyya Distance (CBBD), Kullback-Leibler Divergence (KLD), Fuzzy-minimum Redundancy Maximum Relevance (FmRMR), Wilcoxon, Receiver Operating Characteristics Curve (ROC) and t-test methods. Further, these ranked features are fed to Support Vector Machine (SVM) classifier to classify normal and abnormal (DR, AMD and glaucoma) classes. The performance of the proposed eye screening system is evaluated using 800 (Normal=400 and Abnormal=400) digital fundus images and 10-fold cross validation method. Our proposed system automatically identifies normal and abnormal classes with an average accuracy of 88.63%, sensitivity of 86.25% and specificity of 91% using 17 optimal features ranked using CBBD and SVM-Radial Basis Function (RBF) classifier. Moreover, a novel Retinal Risk Index (RRI) is developed using two significant features to distinguish two classes using single number. Such a system helps to reduce eye screening time in polyclinics or community-based mass screening. They will refer the patients to main hospitals only if the diagnosis belong to the abnormal class. Hence, the main hospitals will not be unnecessarily crowded and doctors can devote their time for other urgent cases.
    Matched MeSH terms: Fundus Oculi
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links