Displaying all 5 publications

Abstract:
Sort:
  1. Collet C, Munhoz D, Mizukami T, Sonck J, Matsuo H, Shinke T, et al.
    Circulation, 2024 Aug 20;150(8):586-597.
    PMID: 38742491 DOI: 10.1161/CIRCULATIONAHA.124.069450
    BACKGROUND: Diffuse coronary artery disease affects the safety and efficacy of percutaneous coronary intervention (PCI). Pathophysiologic coronary artery disease patterns can be quantified using fractional flow reserve (FFR) pullbacks incorporating the pullback pressure gradient (PPG) calculation. This study aimed to establish the capacity of PPG to predict optimal revascularization and procedural outcomes.

    METHODS: This prospective, investigator-initiated, single-arm, multicenter study enrolled patients with at least one epicardial lesion with an FFR ≤0.80 scheduled for PCI. Manual FFR pullbacks were used to calculate PPG. The primary outcome of optimal revascularization was defined as an FFR ≥0.88 after PCI.

    RESULTS: A total of 993 patients with 1044 vessels were included. The mean FFR was 0.68±0.12, PPG 0.62±0.17, and the post-PCI FFR was 0.87±0.07. PPG was significantly correlated with the change in FFR after PCI (r=0.65 [95% CI, 0.61-0.69]; P<0.001) and demonstrated excellent predictive capacity for optimal revascularization (area under the receiver operating characteristic curve, 0.82 [95% CI, 0.79-0.84]; P<0.001). FFR alone did not predict revascularization outcomes (area under the receiver operating characteristic curve, 0.54 [95% CI, 0.50-0.57]). PPG influenced treatment decisions in 14% of patients, redirecting them from PCI to alternative treatment modalities. Periprocedural myocardial infarction occurred more frequently in patients with low PPG (<0.62) compared with those with focal disease (odds ratio, 1.71 [95% CI, 1.00-2.97]).

    CONCLUSIONS: Pathophysiologic coronary artery disease patterns distinctly affect the safety and effectiveness of PCI. PPG showed an excellent predictive capacity for optimal revascularization and demonstrated added value compared with an FFR measurement.

    REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT04789317.

    Matched MeSH terms: Fractional Flow Reserve, Myocardial*
  2. Govindaraju K, Viswanathan GN, Badruddin IA, Kamangar S, Salman Ahmed NJ, Al-Rashed AA
    Comput Methods Biomech Biomed Engin, 2016 Nov;19(14):1541-9.
    PMID: 27052093 DOI: 10.1080/10255842.2016.1170119
    This study aims to investigate the influence of artery wall curvature on the anatomical assessment of stenosis severity and to identify a region of misinterpretation in the assessment of per cent area stenosis (AS) for functionally significant stenosis using fractional flow reserve (FFR) as standard. Five artery models of different per cent AS severity (70, 75, 80, 85 and 90%) were considered. For each per cent AS severity, the angle of curvature of the arterial wall varied from straight to an increasingly curved model (0°, 30°, 60°, 90° and 120°). Computational fluid dynamics was performed under transient physiologic hyperemic flow conditions to investigate the influence of artery wall curvature on the pressure drop and the FFR. The findings in this study may be useful in in vitro anatomical assessment of functionally significant stenosis. The FFR decreased with increasing stenosis severity for a given curvature of the artery wall. Moreover, a significant decrease in FFR was found between straight and curved models discussed for a given severity condition. These findings indicate that the curvature effect was included in the FFR assessment in contrast to minimum lumen area (MLA) or per cent AS assessment. The MLA or per cent AS assessment may lead to underestimation of stenosis severity. From this numerical study, an uncertainty region could be evaluated using the clinical FFR cutoff value of 0.8. This value was observed at 81.98 and 79.10% AS for arteries with curvature angles of 0° and 120° respectively. In conclusion, the curvature of the artery should not be neglected in in vitro anatomical assessment.
    Matched MeSH terms: Fractional Flow Reserve, Myocardial*
  3. Her AY, Shin ES, Bang LH, Nuruddin AA, Tang Q, Hsieh IC, et al.
    Cardiol J, 2021;28(1):136-149.
    PMID: 31565793 DOI: 10.5603/CJ.a2019.0093
    Coronary artery disease (CAD) is currently the leading cause of death globally, and the prevalence of this disease is growing more rapidly in the Asia-Pacific region than in Western countries. Although the use of metal coronary stents has rapidly increased thanks to the advancement of safety and efficacy of newer generation drug eluting stent (DES), patients are still negatively affected by some the inherent limitations of this type of treatment, such as stent thrombosis or restenosis, including neoatherosclerosis, and the obligatory use of dual antiplatelet therapy (DAPT) with unknown optimal duration. Drug-coated balloon (DCB) treatment is based on a leave-nothing-behind concept and therefore it is not limited by stent thrombosis and long-term DAPT; it directly delivers an anti-proliferative drug which is coated on a balloon after improving coronary blood flow. At present, DCB treatment is recommended as the first-line treatment option in metal stent-related restenosis linked to DES and bare metal stent. For de novo coronary lesions, the application of DCB treatment is extended further, for conditions such as small vessel disease, bifurcation lesions, and chronic total occlusion lesions, and others. Recently, several reports have suggested that fractional flow reserve guided DCB application was safe for larger coronary artery lesions and showed good long-term outcomes. Therefore, the aim of these recommendations of the consensus group was to provide adequate guidelines for patients with CAD based on objective evidence, and to extend the application of DCB to a wider variety of coronary diseases and guide their most effective and correct use in actual clinical practice.
    Matched MeSH terms: Fractional Flow Reserve, Myocardial*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links