Displaying publications 1 - 20 of 41 in total

Abstract:
Sort:
  1. Song D, Dong K, Liu S, Fu S, Zhao F, Man C, et al.
    Food Chem, 2024 Oct 30;456:140070.
    PMID: 38917694 DOI: 10.1016/j.foodchem.2024.140070
    Food adulteration and illegal supplementations have always been one of the major problems in the world. The threat of food adulteration to the health of consumers cannot be ignored. Food of questionable origin causes economic losses to consumers, but the potential health risks cannot be ignored. However, the traditional detection methods are time-consuming and complex. This review mainly discusses the types of adulteration and technologies used to detect adulteration. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) is also emphasized in the detection of adulteration and authenticity of origin analysis of various types of food (milk, meat, edible oil, etc.), and the future application direction and feasibility of this technology are analyzed. On this basis, MALDI-TOF MS was compared with other detection methods, highlighting the advantages of this technology in the detection of food adulteration. The future development prospect and direction of this technology are also emphasized.
    Matched MeSH terms: Food Analysis/methods
  2. Md Noh MF, Gunasegavan RD, Mustafa Khalid N, Balasubramaniam V, Mustar S, Abd Rashed A
    Molecules, 2020 Oct 06;25(19).
    PMID: 33036314 DOI: 10.3390/molecules25194567
    Food composition database (FCD) provides the nutritional composition of foods. Reliable and up-to date FCD is important in many aspects of nutrition, dietetics, health, food science, biodiversity, plant breeding, food industry, trade and food regulation. FCD has been used extensively in nutrition labelling, nutritional analysis, research, regulation, national food and nutrition policy. The choice of method for the analysis of samples for FCD often depends on detection capability, along with ease of use, speed of analysis and low cost. Sample preparation is the most critical stage in analytical method development. Samples can be prepared using numerous techniques; however it should be applicable for a wide range of analytes and sample matrices. There are quite a number of significant improvements on sample preparation techniques in various food matrices for specific analytes highlighted in the literatures. Improvements on the technology used for the analysis of samples by specific instrumentation could provide an alternative to the analyst to choose for their laboratory requirement. This review provides the reader with an overview of recent techniques that can be used for sample preparation and instrumentation for food analysis which can provide wide options to the analysts in providing data to their FCD.
    Matched MeSH terms: Food Analysis/methods*
  3. Basri DF, Abu Bakar NF, Fudholi A, Ruslan MH, Saroeun I
    J Environ Public Health, 2015;2015:470968.
    PMID: 25688274 DOI: 10.1155/2015/470968
    The content of 12 elements in Cambodian dried striped snakehead fish was determined using inductively coupled plasma mass spectrometry. The present study compares the level of the trace toxic metals and nutritional trace elements in the fish processed using solar drying system (SDS) and open sun drying (OSD). The skin of SDS fish has lower level of As, Pb, and Cd compared to the OSD sample. As such, the flesh of the fish accumulated higher amount of toxic metals during OSD compared to SDS. However, arsenic was detected in both samples within the safe limit. The nutritional elements (Fe, Mn, Mg, Se, Mo, Cu, Ni, and Cr) were higher in the skin sample SDS fish compared to OSD fish. These beneficial metals were not accumulated in the flesh sample SDS fish demonstrating lower level compared to drying under conventional system. The reddish coloration of the SDS fish was due to the presence of high Cu content in both the skin and flesh samples which possibly account for no mold formation 5 days after packaging. As conclusion, drying of Cambodian C. striata using solar-assisted system has proven higher content of the nutritious elements compared to using the conventional system despite only slight difference in the toxic metals level between the two systems.
    Matched MeSH terms: Food Analysis/methods*
  4. Yeap HY, Faruq G, Zakaria HP, Harikrishna JA
    ScientificWorldJournal, 2013;2013:569268.
    PMID: 24222741 DOI: 10.1155/2013/569268
    Allele Specific Amplification with four primers (External Antisense Primer, External Sense Primer, Internal Nonfragrant Sense Primer, and Internal Fragrant Antisense Primer) and sensory evaluation with leaves and grains were executed to identify aromatic rice genotypes and their F1 individuals derived from different crosses of 2 Malaysian varieties with 4 popular land races and 3 advance lines. Homozygous aromatic (fgr/fgr) F1 individuals demonstrated better aroma scores compared to both heterozygous nonaromatic (FGR/fgr) and homozygous nonaromatic (FGR/FGR) individuals, while, some F1 individuals expressed aroma in both leaf and grain aromatic tests without possessing the fgr allele. Genotypic analysis of F1 individuals for the fgr gene represented homozygous aromatic, heterozygous nonaromatic and homozygous nonaromatic genotypes in the ratio 20:19:3. Genotypic and phenotypic analysis revealed that aroma in F1 individuals was successfully inherited from the parents, but either molecular analysis or sensory evaluation alone could not determine aromatic condition completely. The integration of molecular analysis with sensory methods was observed as rapid and reliable for the screening of aromatic genotypes because molecular analysis could distinguish aromatic homozygous, nonaromatic homozygous and nonaromatic heterozygous individuals, whilst the sensory method facilitated the evaluation of aroma emitted from leaf and grain during flowering to maturity stages.
    Matched MeSH terms: Food Analysis/methods*
  5. Malekbala MR, Soltani SM, Hosseini S, Eghbali Babadi F, Malekbala R
    Crit Rev Food Sci Nutr, 2017 Sep 22;57(14):2935-2942.
    PMID: 26207585 DOI: 10.1080/10408398.2015.1020532
    During the past few years the scientific and medical community has been confronted with a continual interest in vitamin E with the interest prompted by new discoveries. Tocopherols and tocotrienols, commonly known as vitamin E, are extremely invaluable compounds and have various nutritional functionalities and benefits to human health. Great deals of research projects have been launched in order to develop effective methods for the extraction of vitamin E. By and large, three distinct extractive methods are usually employed: supercritical fluid extraction (SFE), molecular distillation, and adsorption methods. These methods are sensitive to different experimental conditions, such as pressure, temperature, and flow rate with noticeable effects on the efficiency of the extraction and enrichment of vitamin E. This review has covered the most commonly adapted extraction methods and has probed into the extraction yields under variable operational parameters.
    Matched MeSH terms: Food Analysis/methods*
  6. Tukiran NA, Ismail A, Mustafa S, Hamid M
    PMID: 25861981 DOI: 10.1080/19440049.2015.1039605
    Porcine gelatine is a common adulterant found in edible bird's nests (EBNs) used to increase the net weight prior to sale. This study aimed to develop indirect enzyme-linked immunosorbent assays (ELISAs) for porcine gelatine adulteration using anti-peptide polyclonal antibodies. Three indirect ELISAs were developed (PAB1, 2 and 3), which had limits of detection (LODs) of 0.12, 0.10 and 0.11 µg g(-1), respectively. When applied to standard solutions of porcine gelatine, the inter- and intra-assays showed coefficients of variation (CVs) less than 20% and were able to detect at least 0.5 ng µg(-1) (0.05%) porcine gelatine in spiked samples. The proposed ELISA offers attractions for quality control in the EBN industry.
    Matched MeSH terms: Food Analysis/methods*
  7. Yuswan MH, A Jalil NH, Mohamad H, Keso S, Mohamad NA, Tengku Md Yusoff TS, et al.
    Food Chem, 2021 Feb 01;337:127762.
    PMID: 32777563 DOI: 10.1016/j.foodchem.2020.127762
    Gelatin and collagen are considered halal-critical ingredients as they are typically derived from either bovine or porcine animals. Current analytical methods for determining the sources of gelatin and collagen suffer from limitations in terms of robustness and false positives in peptide matching. Thus, the aim of this study was to investigate the utility of monitoring hydroxyproline, a signature amino acid for gelatin and collagen, for identifying potentially haram foodstuffs. To determine the hydroxyproline profiles among animal- and plant-based samples, one-way univariate analysis of variance followed by pair-wise comparison was used to establish statistical significance. Multivariate chemometric analysis through principal component analysis revealed a discrete distribution pattern among 59 samples due to hydroxyproline variability. Finally, inter- and intra-laboratory comparisons demonstrated the validity and robustness of hydroxyproline determination according to ISO 17025. Thus, this preliminary identification technique will aid the identification of potentially haram foodstuffs.
    Matched MeSH terms: Food Analysis/methods*
  8. Dirong G, Nematbakhsh S, Selamat J, Chong PP, Idris LH, Nordin N, et al.
    Molecules, 2021 Oct 28;26(21).
    PMID: 34770913 DOI: 10.3390/molecules26216502
    Chicken is known to be the most common meat type involved in food mislabeling and adulteration. Establishing a method to authenticate chicken content precisely and identifying chicken breeds as declared in processed food is crucial for protecting consumers' rights. Categorizing the authentication method into their respective omics disciplines, such as genomics, transcriptomics, proteomics, lipidomics, metabolomics, and glycomics, and the implementation of bioinformatics or chemometrics in data analysis can assist the researcher in improving the currently available techniques. Designing a vast range of instruments and analytical methods at the molecular level is vital for overcoming the technical drawback in discriminating chicken from other species and even within its breed. This review aims to provide insight and highlight previous and current approaches suitable for countering different circumstances in chicken authentication.
    Matched MeSH terms: Food Analysis/methods
  9. Marikkar JM, Rana S
    J Oleo Sci, 2014;63(9):867-73.
    PMID: 25174673
    A study was conducted to detect and quantify lard stearin (LS) content in canola oil (CaO) using differential scanning calorimetry (DSC). Authentic samples of CaO were obtained from a reliable supplier and the adulterant LS were obtained through a fractional crystallization procedure as reported previously. Pure CaO samples spiked with LS in levels ranging from 5 to 15% (w/w) were analyzed using DSC to obtain their cooling and heating profiles. The results showed that samples contaminated with LS at 5% (w/w) level can be detected using characteristic contaminant peaks appearing in the higher temperature regions (0 to 70°C) of the cooling and heating curves. Pearson correlation analysis of LS content against individual DSC parameters of the adulterant peak namely peak temperature, peak area, peak onset temperature indicated that there were strong correlations between these with the LS content of the CaO admixtures. When these three parameters were engaged as variables in the execution of the stepwise regression procedure, predictive models for determination of LS content in CaO were obtained. The predictive models obtained with single DSC parameter had relatively lower coefficient of determination (R(2) value) and higher standard error than the models obtained using two DSC parameters in combination. This study concluded that the predictive models obtained with peak area and peak onset temperature of the adulteration peak would be more accurate for prediction of LS content in CaO based on the highest coefficient of determination (R(2) value) and smallest standard error.
    Matched MeSH terms: Food Analysis/methods*
  10. Kuswandi B, Irmawati T, Hidayat MA, Jayus, Ahmad M
    Sensors (Basel), 2014;14(2):2135-49.
    PMID: 24473284 DOI: 10.3390/s140202135
    A simple visual ethanol biosensor based on alcohol oxidase (AOX) immobilised onto polyaniline (PANI) film for halal verification of fermented beverage samples is described. This biosensor responds to ethanol via a colour change from green to blue, due to the enzymatic reaction of ethanol that produces acetaldehyde and hydrogen peroxide, when the latter oxidizes the PANI film. The procedure to obtain this biosensor consists of the immobilization of AOX onto PANI film by adsorption. For the immobilisation, an AOX solution is deposited on the PANI film and left at room temperature until dried (30 min). The biosensor was constructed as a dip stick for visual and simple use. The colour changes of the films have been scanned and analysed using image analysis software (i.e., ImageJ) to study the characteristics of the biosensor's response toward ethanol. The biosensor has a linear response in an ethanol concentration range of 0.01%-0.8%, with a correlation coefficient (r) of 0.996. The limit detection of the biosensor was 0.001%, with reproducibility (RSD) of 1.6% and a life time up to seven weeks when stored at 4 °C. The biosensor provides accurate results for ethanol determination in fermented drinks and was in good agreement with the standard method (gas chromatography) results. Thus, the biosensor could be used as a simple visual method for ethanol determination in fermented beverage samples that can be useful for Muslim community for halal verification.
    Matched MeSH terms: Food Analysis/methods*
  11. Leong YH, Chiang PN, Jaafar HJ, Gan CY, Majid MI
    PMID: 24392728 DOI: 10.1080/19440049.2014.880519
    A total of 126 food samples, categorised into three groups (seafood and seafood products, meat and meat products, as well as milk and dairy products) from Malaysia were analysed for polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). The concentration of PCDD/Fs that ranged from 0.16 to 0.25 pg WHO05-TEQ g(-1) fw was found in these samples. According to the food consumption data from the Global Environment Monitoring System (GEMS) of the World Health Organization (WHO), the dietary exposures to PCDD/F from seafood and seafood products, meat and meat products, as well as milk and dairy products for the general population in Malaysia were 0.064, 0.183 and 0.736 pg WHO05-TEQ kg(-1) bw day(-1), respectively. However, the exposure was higher in seafood and seafood products (0.415 pg WHO05-TEQ kg(-1) bw day(-1)) and meat and meat products (0.317 pg WHO05-TEQ kg(-1) bw day(-1)) when the data were estimated using the Malaysian food consumption statistics. The lower exposure was observed in dairy products with an estimation of 0.365 pg WHO05-TEQ kg(-1) bw day(-1). Overall, these dietary exposure estimates were much lower than the tolerable daily intake (TDI) as recommended by WHO. Thus, it is suggested that the dietary exposure to PCDD/F does not represent a risk for human health in Malaysia.
    Matched MeSH terms: Food Analysis/methods*
  12. Fadzlillah NA, Rohman A, Ismail A, Mustafa S, Khatib A
    J Oleo Sci, 2013;62(8):555-62.
    PMID: 23985484
    In dairy product sector, butter is one of the potential sources of fat soluble vitamins, namely vitamin A, D, E, K; consequently, butter is taken into account as high valuable price from other dairy products. This fact has attracted unscrupulous market players to blind butter with other animal fats to gain economic profit. Animal fats like mutton fat (MF) are potential to be mixed with butter due to the similarity in terms of fatty acid composition. This study focused on the application of FTIR-ATR spectroscopy in conjunction with chemometrics for classification and quantification of MF as adulterant in butter. The FTIR spectral region of 3910-710 cm⁻¹ was used for classification between butter and butter blended with MF at various concentrations with the aid of discriminant analysis (DA). DA is able to classify butter and adulterated butter without any mistakenly grouped. For quantitative analysis, partial least square (PLS) regression was used to develop a calibration model at the frequency regions of 3910-710 cm⁻¹. The equation obtained for the relationship between actual value of MF and FTIR predicted values of MF in PLS calibration model was y = 0.998x + 1.033, with the values of coefficient of determination (R²) and root mean square error of calibration are 0.998 and 0.046% (v/v), respectively. The PLS calibration model was subsequently used for the prediction of independent samples containing butter in the binary mixtures with MF. Using 9 principal components, root mean square error of prediction (RMSEP) is 1.68% (v/v). The results showed that FTIR spectroscopy can be used for the classification and quantification of MF in butter formulation for verification purposes.
    Matched MeSH terms: Food Analysis/methods*
  13. Iqbal MS, Bahari MB, Darwis Y, Iqbal MZ, Hayat A, Venkatesh G
    J AOAC Int, 2013 6 19;96(2):290-4.
    PMID: 23767352
    A simple and selective RP-HPLC-UV method with SPE was developed and validated for the quantification of cefotaxime in all-in-one total parenteral nutrition (AIO-TPN) admixtures. Chromatographic separation was achieved on a 5 pm particle size C18 DB column (250 x 4.6 mm id) using the mobile phase ammonium acetate (25 mM, pH 4.0)-50% acetonitrile in methanol (80 + 20, v/v). The flow rate was 0.9 mL/min and the detection wavelength was 254 nm. The analyte was extracted from AIO-TPN admixtures by means of an SPE method. The cefotaxime calibration curve was linear over a concentration range of 100-1400 microg/mL with a correlation coefficient of > or = 0.9994. The intraday accuracy and precision for cefotaxime were < or = -3.15 and < or = 3.08%, respectively, whereas the interday accuracy and precision were < or = -2.48 and < or = 2.25%, respectively. The method was successfully applied to stability studies of cefotaxime in the presence of micronutrients together with low and high concentrations of macronutrients in AIO-TPN admixtures. Cefotaxime was degraded by 13.00 and 26.05% at room temperature (25 +/- 2 degrees C) after 72 h in low and high macronutrient concentration formulations of AIO-TPN admixtures, respectively. The values of cefotaxime degradation rates for low and high macronutrient concentration formulations of AIO-TPN admixtures were -0.164 and -0.353, respectively. These results indicated that there was a higher rate of degradation in the AIO-TPN admixture formulations containing high concentrations of macronutrients.
    Matched MeSH terms: Food Analysis/methods
  14. Mamat M, Samad SA, Hannan MA
    Sensors (Basel), 2011;11(6):6435-53.
    PMID: 22163964 DOI: 10.3390/s110606435
    This paper reports the design of an electronic nose (E-nose) prototype for reliable measurement and correct classification of beverages. The prototype was developed and fabricated in the laboratory using commercially available metal oxide gas sensors and a temperature sensor. The repeatability, reproducibility and discriminative ability of the developed E-nose prototype were tested on odors emanating from different beverages such as blackcurrant juice, mango juice and orange juice, respectively. Repeated measurements of three beverages showed very high correlation (r > 0.97) between the same beverages to verify the repeatability. The prototype also produced highly correlated patterns (r > 0.97) in the measurement of beverages using different sensor batches to verify its reproducibility. The E-nose prototype also possessed good discriminative ability whereby it was able to produce different patterns for different beverages, different milk heat treatments (ultra high temperature, pasteurization) and fresh and spoiled milks. The discriminative ability of the E-nose was evaluated using Principal Component Analysis and a Multi Layer Perception Neural Network, with both methods showing good classification results.
    Matched MeSH terms: Food Analysis/methods*
  15. Sobhanzadeh E, Abu Bakar NK, Bin Abas MR, Nemati K
    Environ Monit Assess, 2012 Sep;184(9):5821-8.
    PMID: 21989900 DOI: 10.1007/s10661-011-2384-0
    In this study, a rapid, specific and sensitive multi-residue method based on acetonitrile extraction followed by dispersive solid-phase extraction (d-SPE) clean-up was implemented and validated for multi-class pesticide residues determination in palm oil for the first time. Liquid-liquid extraction followed by low-temperature precipitation procedure was evaluated in order to study the freezing-out clean-up efficiency to obtain high recovery yield and low co-extract fat residue in the final extract. For clean-up step, d-SPE was carried out using a combination of anhydrous magnesium sulphate (MgSO(4)), primary secondary amine, octadecyl (C(18)) and graphitized carbon black. Recovery study was performed at two concentration levels (10 and 100 ng g(-1)), yielding recovery rates between 74.52% and 97.1% with relative standard deviation values below 10% (n = 6) except diuron. Detection and quantification limits were lower than 5 and 9 ng g(-1), respectively. In addition, soft matrix effects (≤±20%) were observed for most of the studied pesticides except malathion that indicated medium (20-50%) matrix effects. The proposed method was successfully applied to the analysis of suspected palm oil samples.
    Matched MeSH terms: Food Analysis/methods*
  16. Khoo HE, Ismail A, Mohd-Esa N, Idris S
    Plant Foods Hum Nutr, 2008 Dec;63(4):170-5.
    PMID: 18810641 DOI: 10.1007/s11130-008-0090-z
    This study was conducted to evaluate the total carotene content (TCC) and beta carotene (BC) in the selected underutilized tropical fruits. TCC of underutilized fruits estimated by spectrophotometric method was in the range of 1.4-19.8 mg/100 g edible portion. The TCC of these fruits decreased in the order: Jentik-jentik > Durian Nyekak 2 > Durian Nyekak 1 > Cerapu 2 > Cerapu 1 > Tampoi Kuning > Bacang 1 > Kuini > Jambu Mawar > Bacang 2 > Durian Daun > Bacang 3 > Tampoi Putih > Jambu Susu. BC contents estimated by HPLC method were highest in Jentik-jentik, followed by Cerapu 2, Durian Nyekak 2, Tampoi Kuning, Durian Nyekak 1, and Cerapu 1, which had a range of 68-92% of BC in TCC. These underutilized fruits have an acceptable amount of carotenoids that are potential antioxidant fruits.
    Matched MeSH terms: Food Analysis/methods
  17. Saad B, Bari MF, Saleh MI, Ahmad K, Talib MK
    J Chromatogr A, 2005 May 06;1073(1-2):393-7.
    PMID: 15909546
    A reversed-phased HPLC method that allows the separation and simultaneous determination of the preservatives benzoic (BA) and sorbic acids (SA), methyl- (MP) and propylparabens (PP) is described. The separations were effected by using an initial mobile phase of methanol-acetate buffer (pH 4.4) (35:65) to elute BA, SA and MP and changing the mobile phase composition to methanol-acetate buffer (pH 4.4) (50:50) thereafter. The detector wavelength was set at 254 nm. Under these conditions, separation of the four components was achieved in less than 23 min. Analytical characteristics of the separation such as limit of detection, limit of quantification, linear range and reproducibility were evaluated. The developed method was applied to the determination of 67 foodstuffs (mainly imported), comprising soft drinks, jams, sauces, canned fruits/vegetables, dried vegetables/fruits and others. The range of preservatives found were from not detected (nd)--1260, nd--1390, nd--44.8 and nd--221 mg kg(-1) for BA, SA, MP and PP, respectively.
    Matched MeSH terms: Food Analysis/methods*
  18. Fadzillah NA, Man Yb, Rohman A, Rosman AS, Ismail A, Mustafa S, et al.
    J Oleo Sci, 2015;64(7):697-703.
    PMID: 25994556 DOI: 10.5650/jos.ess14255
    The authentication of food products from the presence of non-allowed components for certain religion like lard is very important. In this study, we used proton Nuclear Magnetic Resonance ((1)H-NMR) spectroscopy for the analysis of butter adulterated with lard by simultaneously quantification of all proton bearing compounds, and consequently all relevant sample classes. Since the spectra obtained were too complex to be analyzed visually by the naked eyes, the classification of spectra was carried out.The multivariate calibration of partial least square (PLS) regression was used for modelling the relationship between actual value of lard and predicted value. The model yielded a highest regression coefficient (R(2)) of 0.998 and the lowest root mean square error calibration (RMSEC) of 0.0091% and root mean square error prediction (RMSEP) of 0.0090, respectively. Cross validation testing evaluates the predictive power of the model. PLS model was shown as good models as the intercept of R(2)Y and Q(2)Y were 0.0853 and -0.309, respectively.
    Matched MeSH terms: Food Analysis/methods*
  19. Rashid NR, Ali ME, Hamid SB, Rahman MM, Razzak MA, Asing, et al.
    PMID: 25906074 DOI: 10.1080/19440049.2015.1039073
    Being the third-largest primate population has not made macaque (Macaca fascicularis sp.) monkeys less exposed to threats and dangers. Despite wildlife protection, they have been widely hunted and consumed in several countries because of their purported nutritional values. In addition to trading as pure bush meats in several places, monkey meat has been sold in meatball and soup products in Indonesia. Thus the possibility of macaque meat trafficking under the label of common meats is quite high. This paper reports the development of a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay with the shortest amplicon length for the confirmed detection of monkey meat under compromised states which are known to degrade DNA. We amplified a 120-bp region of d-loop gene using a pair of macaque-specific primers and confirmed their specificity for the target species through cross-challenging against 17 different species using a 141-bp site of an 18 S rRNA gene as an endogenous control for eukaryotes. This eliminated the possibilities of any false-negative detection with complex matrices or degraded specimens. The detection limit was 0.00001 ng DNA in a pure state and 0.1% of meat in mixed matrices and commercial meatball products. RFLP analysis further authenticated the originality of the PCR product and distinctive restriction patterns were found upon AluI and CViKI-1 digestion. A micro-fluidic lab-on-a-chip automated electrophoretic system separated the fragments with high resolution. The assay was validated for screening commercial meatball products with sufficient internal control.
    Matched MeSH terms: Food Analysis/methods*
  20. Ang LF, Por LY, Yam MF
    PLoS One, 2015;10(3):e0111859.
    PMID: 25789757 DOI: 10.1371/journal.pone.0111859
    An amperometric enzyme-electrode was introduced where glucose oxidase (GOD) was immobilized on chitosan membrane via crosslinking, and then fastened on a platinum working electrode. The immobilized enzyme showed relatively high retention activity. The activity of the immobilized enzyme was influenced by its loading, being suppressed when more than 0.6 mg enzyme was used in the immobilization. The biosensor showing the highest response to glucose utilized 0.21 ml/cm2 thick chitosan membrane. The optimum experimental conditions for the biosensors in analysing glucose dissolved in 0.1 M phosphate buffer (pH 6.0) were found to be 35°C and 0.6 V applied potential. The introduced biosensor reached a steady-state current at 60 s. The apparent Michaelis-Menten constant ([Formula: see text]) of the biosensor was 14.2350 mM, and its detection limit was 0.05 mM at s/n > 3, determined experimentally. The RSD of repeatability and reproducibility of the biosensor were 2.30% and 3.70%, respectively. The biosensor was showed good stability; it retained ~36% of initial activity after two months of investigation. The performance of the biosensors was evaluated by determining the glucose content in fruit homogenates. Their accuracy was compared to that of a commercial glucose assay kit. There was no significance different between two methods, indicating the introduced biosensor is reliable.
    Matched MeSH terms: Food Analysis/methods*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links