Displaying all 3 publications

Abstract:
Sort:
  1. Ramli NSK, Giribabu N, Karim K, Salleh N
    J Mol Histol, 2019 Feb;50(1):21-34.
    PMID: 30430402 DOI: 10.1007/s10735-018-9804-1
    Precise regulation of vas deferens fluid volume which is important for sperm survival might be influenced by testosterone. In order to investigate changes in vas deferens fluid volume and aquoporins (AQP) isoforms expression under testosterone influence, orchidectomized Sprague-Dawley rats were given 125 and 250 µg/kg/day testosterone with or without flutamide, an androgen receptor blocker or finasteride, a 5alpha-reductase inhibitor for seven consecutive days. Following treatment completion, vas deferens was perfused and changes in the fluid secretion rate and osmolality were determined in the presence of acetazolamide. Rats were then sacrificed and vas deferens was harvested for histology, tissue expression and distribution analyses of AQP-1, AQP-2, AQP-5, AQP-7 and AQP-9 proteins by Western blotting and immunohistochemistry, respectively. Our findings indicate that testosterone causes vas deferens fluid secretion rate to increase, which was antagonized by acetazolamide. Fluid osmolality increased following testosterone treatment and further increased when acetazolamide was given. Co-administration of flutamide or finasteride with testosterone causing both fluid secretion rate and osmolality to decrease. Histology revealed increased size of vas deferens lumen with increased thickness of vas deferens stroma. Expression of AQP-1, AQP-2 and AQP-9 were detected in vas deferens but not AQP-5 and AQP-7, and the levels of these proteins were increased by testosterone treatment mainly at the apical membrane of vas deferens epithelium. In conclusion, increased in vas deferens fluid secretion rate under testosterone influence mediated via the up-regulation of AQP-1, 2 and 9 might be important for vas deferens fluid homeostasis in order to ensure normal male fertility.
    Matched MeSH terms: Finasteride/pharmacology
  2. Khadijah Ramli NS, Giribabu N, Muniandy S, Salleh N
    Theriogenology, 2018 Mar 01;108:354-361.
    PMID: 29294437 DOI: 10.1016/j.theriogenology.2017.12.035
    Precise regulation of vas deferens fluid pH is essential for sperm. However, the mechanisms underlying effect of testosterone on vas deferens fluid pH have never been identified, which could involve changes in expression and functional activity of vacoular (V)-ATPase.

    METHODS: Orchidectomized, adult male Sprague-Dawley rats were treated subcutaneously with 125 μg/kg/day and 250 μg/kg/day testosterone with or without flutamide (androgen receptor blocker) and finasteride (5α-reductase inhibitor) for seven (7) days. Following treatment completion, in vivo perfusion of vas deferens lumen was performed and changes in fluid secretion rate, pH and HCO3- content were measured with and without bafilomycin, a V-ATPase inhibitor. Rats were then sacrificed and vas deferens were harvested and subjected for V-ATPase A1 and B1/2 protein expression and distribution analysis by western blotting and immunohistochemistry, respectively.

    RESULTS: In sham-operated and testosterone-treated orchidectomized rats, higher fluid secretion rate, which was not antagonized by bafilomycin but lower HCO3- content and pH which were antagonized by bafilomycin were observed when compared to orchidectomized-only and orchidectomized, testosterone-treated rats receiving flutamide or finasteride, respectively. Bafilomycin had no effect on fluid secretion rate, HCO3- content and pH in orchidectomized and testosterone-treated orchidectomized rats receiving flutamide and finasteride. V-ATPase A1 and B1/2 proteins were expressed at high levels in vas deferens and were highly distributed at the apical membrane of luminal epithelium and in muscle layer of this organ, mainly in sham and testosterone-treated orchidectomized rats.

    CONCLUSIONS: V-ATPase is involved in acidification of vas deferens fluid under testosterone influence.

    Matched MeSH terms: Finasteride/pharmacology
  3. Dehghan F, Muniandy S, Yusof A, Salleh N
    Int J Mol Sci, 2014;15(3):4619-34.
    PMID: 24642882 DOI: 10.3390/ijms15034619
    Ovarian steroids such as estrogen and progesterone have been reported to influence knee laxity. The effect of testosterone, however, remains unknown. This study investigated the effect of testosterone on the knee range of motion (ROM) and the molecular mechanisms that might involve changes in the expression of relaxin receptor isoforms, Rxfp1 and Rxfp2 in the patella tendon and lateral collateral ligament of the female rat knee. Ovariectomized adult female Wistar rats received three days treatment with peanut oil (control), testosterone (125 and 250 μg/kg) and testosterone (125 and 250 μg/kg) plus flutamide, an androgen receptor blocker or finasteride, a 5α-reductase inhibitor. Duplicate groups received similar treatment however in the presence of relaxin (25 ng/kg). A day after the last drug injection, knee passive ROM was measured by using a digital miniature goniometer. Both tendon and ligament were harvested and then analysed for protein and mRNA expression for Rxfp1 and Rxfp2 respectively. Knee passive ROM, Rxfp1 and Rxfp2 expression were significantly reduced following treatment with testosterone. Flutamide or finasteride administration antagonized the testosterone effect. Concomitant administration of testosterone and relaxin did not result in a significant change in knee ROM as compared to testosterone only treatment; however this was significantly increased following flutamide or finasteride addition. Testosterone effect on knee passive ROM is likely mediated via dihydro-testosterone (DHT), and involves downregulation of Rxfp1 and Rxfp2 expression, which may provide the mechanism underlying testosterone-induced decrease in female knee laxity.
    Matched MeSH terms: Finasteride/pharmacology
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links