Displaying all 5 publications

Abstract:
Sort:
  1. Naomi R, Ratanavaraporn J, Fauzi MB
    Materials (Basel), 2020 Jul 10;13(14).
    PMID: 32664418 DOI: 10.3390/ma13143097
    The use of hybridisation strategy in biomaterials technology provides a powerful synergistic effect as a functional matrix. Silk fibroin (SF) has been widely used for drug delivery, and collagen (Col) resembles the extracellular matrix (ECM). This systematic review was performed to scrutinise the outcome of hybrid Col and SF for cutaneous wound healing. This paper reviewed the progress of related research based on in vitro and in vivo studies and the influence of the physicochemical properties of the hybrid in wound healing. The results indicated the positive outcome of hybridising Col and SF for cutaneous wound healing. The hybridisation of these biomaterials exhibits an excellent moisturising property, perfectly interconnected structure, excellent water absorption and retention capacity, an acceptable range of biodegradability, and synergistic effects in cell viability. The in vitro and in vivo studies clearly showed a promising outcome in the acceleration of cutaneous wound healing using an SF and Col hybrid scaffold. The review of this study can be used to design an appropriate hybrid scaffold for cutaneous wound healing. Therefore, this systematic review recapitulated that the hybridisation of Col and SF promoted rapid cutaneous healing through immediate wound closure and reepithelisation, with no sign of adverse events. This paper concludes on the need for further investigations of the hybrid SF and Col in the future to ensure that the hybrid biomaterials are well-suited for human skin.
    Matched MeSH terms: Fibroins
  2. Sangkert S, Kamonmattayakul S, Chai WL, Meesane J
    J Biomed Mater Res A, 2017 Jun;105(6):1624-1636.
    PMID: 28000362 DOI: 10.1002/jbm.a.35983
    Maxillofacial bone defect is a critical problem for many patients. In severe cases, the patients need an operation using a biomaterial replacement. Therefore, to design performance biomaterials is a challenge for materials scientists and maxillofacial surgeons. In this research, porous silk fibroin scaffolds with mimicked microenvironment based on decellularized pulp and fibronectin were created as for bone regeneration. Silk fibroin scaffolds were fabricated by freeze-drying before modification with three different components: decellularized pulp, fibronectin, and decellularized pulp/fibronectin. The morphologies of the modified scaffolds were observed by scanning electron microscopy. Existence of the modifying components in the scaffolds was proved by the increase in weights and from the pore size measurements of the scaffolds. The modified scaffolds were seeded with MG-63 osteoblasts and cultured. Testing of the biofunctionalities included cell viability, cell proliferation, calcium content, alkaline phosphatase activity (ALP), mineralization and histological analysis. The results demonstrated that the modifying components organized themselves into aggregations of a globular structure. They were arranged themselves into clusters of aggregations with a fibril structure in the porous walls of the scaffolds. The results showed that modified scaffolds with a mimicked microenvironment of decellularized pulp/fibronectin were suitable for cell viability since the cells could attach and spread into most of the pores of the scaffold. Furthermore, the scaffolds could induce calcium synthesis, mineralization, and ALP activity. The results indicated that modified silk fibroin scaffolds with a mimicked microenvironment of decellularized pulp/fibronectin hold promise for use in tissue engineering in maxillofacial bone defects. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1624-1636, 2017.
    Matched MeSH terms: Fibroins/chemistry*
  3. Ang SL, Shaharuddin B, Chuah JA, Sudesh K
    Int J Biol Macromol, 2020 Feb 15;145:173-188.
    PMID: 31866541 DOI: 10.1016/j.ijbiomac.2019.12.149
    Polyhydroxyalkanoates (PHAs) are biodegradable polyesters produced by microorganisms, under unbalanced growth conditions, as a carbon storage compound. PHAs are composed of various monomers such as 3-hydroxybutyrate (3HB) and 3-hydroxyhexanoate (3HHx). Silk fibroin (SF) derived from Bombyx mori cocoons, is a widely studied protein polymer commonly used for biomaterial applications. In this study, non-woven electrospun films comprising a copolymer of 3HB and 3HHx [P(3HB-co-3HHx)], SF and their blends were prepared by electrospinning technique. The growth and osteogenic differentiation of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) were studied using different types of fabricated electrospun films. The differentiation study revealed that electrospun P(3HB-co-3HHx)/SF film supports the differentiation of hUC-MSCs into the osteogenic lineage, confirmed by histological analysis using Alizarin Red staining, energy dispersive X-ray (EDX) and quantitative real-time PCR analysis (qPCR). Electrospun P(3HB-co-3HHx)/SF film up-regulated the expression of osteogenic marker genes, alkaline phosphatase (ALP) and osteocalcin (OCN), by 1.6-fold and 2.8-fold respectively, after 21 days of osteogenic induction. In conclusion, proliferation and osteogenic differentiation of hUC-MSCs were enhanced through the blending of P(3HB-co-3HHx) and SF. The results from this study suggest that electrospun P(3HB-co-3HHx)/SF film is a promising biomaterial for bone tissue engineering.
    Matched MeSH terms: Fibroins
  4. Amornsudthiwat P, Mongkolnavin R, Kanokpanont S, Panpranot J, Wong CS, Damrongsakkul S
    Colloids Surf B Biointerfaces, 2013 Nov 1;111:579-86.
    PMID: 23893032 DOI: 10.1016/j.colsurfb.2013.07.009
    Low energy plasma has been introduced to treat the surface of Thai silk fibroin which should be enhanced for cell adhesion due to its native hydrophobic surface. Plasma surface treatment could introduce desirable hydrophilic functionalities on the surface without using any chemicals. In this work, nitrogen glow discharge plasma was generated by a low energy AC50Hz power supply system. The plasma operating conditions were optimized to reach the highest nitrogen active species by using optical emission spectroscopy. X-ray photoelectron spectroscopy (XPS) revealed that amine, hydroxyl, ether, and carboxyl groups were induced on Thai silk fibroin surface after plasma treatment. The results on Fourier transform infrared attenuated total reflection (FTIR-ATR) spectroscopy confirmed that the plasma treated effects were only on the outermost layer since there was no change in the bulk chemistry. The surface topography was insignificantly changed from the detection with atomic force microscopy (AFM). The plasma-treated effects were the improved surface wettability and cell adhesion. After a 90-s treatment, the water contact angle was at 20°, while the untreated surface was at 70°. The early cell adhesion of L929 mouse fibroblast was accelerated. L929 cells only took 3h to reach 100% cell adhesion on 90 s N2 plasma-treated surface, while there was less than 50% cell adhesion on the untreated Thai silk fibroin surface after 6h of culture. The cell adhesion results were in agreement with the cytoskeleton development. L929 F-actin was more evident on 90 s N2 plasma-treated surface than others. It could be concluded that a lower energy AC50Hz plasma system enhanced early L929 mouse fibroblast adhesion on Thai silk fibroin surface without any significant change in surface topography and bulk chemistry.
    Matched MeSH terms: Fibroins/pharmacology*
  5. Ezhilarasu H, Sadiq A, Ratheesh G, Sridhar S, Ramakrishna S, Ab Rahim MH, et al.
    Nanomedicine (Lond), 2019 01;14(2):201-214.
    PMID: 30526272 DOI: 10.2217/nnm-2018-0271
    AIM: Atherosclerosis is a common cardiovascular disease causing medical problems globally leading to coronary artery bypass surgery. The present study is to fabricate core/shell nanofibers to encapsulate VEGF for the differentiation of mesenchymal stem cells (MSCs) into smooth muscle cells to develop vascular grafts.

    MATERIALS & METHODS: The fabricated core/shell nanofibers contained polycaprolactone/gelatin as the shell, and silk fibroin/VEGF as the core materials.

    RESULTS: The results observed that the core/shell nanofibers interact to differentiate MSCs into smooth muscle cells by the expression of vascular smooth muscle cell (VSMC) contractile proteins α-actinin, myosin and F-actin.

    CONCLUSION: The functionalized polycaprolactone/gelatin/silk fibroin/VEGF (250 ng) core/shell nanofibers were fabricated for the controlled release of VEGF in a persistent manner for the differentiation of MSCs into smooth muscle cells for vascular tissue engineering.

    Matched MeSH terms: Fibroins/chemistry
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links