Displaying all 7 publications

Abstract:
Sort:
  1. George E, Mohandas N, Duraisamy G, Adeeb N, Zainuddin ZA, Teng MS, et al.
    Med J Malaysia, 1988 Dec;43(4):327-31.
    PMID: 3241598
    Matched MeSH terms: Fetal Blood/cytology*
  2. Wahid FS, Nasaruddin MZ, Idris MR, Tusimin M, Tumian NR, Mahdy ZA
    J Obstet Gynaecol Res, 2012 Mar;38(3):490-7.
    PMID: 22381102 DOI: 10.1111/j.1447-0756.2011.01740.x
    To compare the numbers of cord blood CD34(+) hematopoietic stem cells (HSC) between preeclampsia (PE) and control (non-PE) subjects and to determine the factors that may influence this observation.
    Matched MeSH terms: Fetal Blood/cytology*
  3. Alauddin H, Langa M, Mohd Yusoff M, Raja Sabudin RZA, Ithnin A, Abdul Razak NF, et al.
    Malays J Pathol, 2017 Apr;39(1):17-23.
    PMID: 28413201 MyJurnal
    INTRODUCTION: Haemoglobin Bart's (Hb Bart's) level is associated with α-thalassaemia traits in neonates, enabling early diagnosis of α-thalassaemia. The study aimed to detect and quantify the Hb Bart's using Cord Blood (CB) and CE Neonat Fast Hb (NF) progammes on fresh and dried blood spot (DBS) specimen respectively by capillary electrophoresis (CE).

    METHODS: Capillarys Hemoglobin (E) Kit (for CB) and Capillarys Neonat Hb Kit (for NF) were used to detect and quantify Hb Bart's by CE in fresh cord blood and dried blood spot (DBS) specimens respectively. High performance liquid chromatography (HPLC) using the β-Thal Short Programme was also performed concurrently with CE analysis. Confirmation was obtained by multiplex ARMS Gap PCR.

    RESULTS: This study was performed on 600 neonates. 32/600 (5.3%) samples showed presence of Hb Bart's peak using the NF programme while 33/600 (5.5%) were positive with CB programme and HPLC methods. The range of Hb Bart's using NF programme and CB programme were (0.5-4.1%) and (0.5-7.1%), respectively. Molecular analysis confirmed all positive samples possessed α-thalassaemia genetic mutations, with 23/33 cases being αα/--SEA, four -α3.7/-α3.7, two αα/-α3.7 and three αα/ααCS. Fifty Hb Bart's negative samples were randomly tested for α-genotypes, three were also found to be positive for α-globin gene mutations. Thus, resulting in sensitivity of 91.7% and 88.9% and specificity of 100% for the Capillarys Cord Blood programme and Capillarys Neonat Fast programme respectively.

    CONCLUSION: Both CE programmes using fresh or dried cord blood were useful as a screening tool for α-thalassaemia in newborns. All methods show the same specificity (100%) with variable, but acceptable sensitivities in the detection of Hb Bart.
    Matched MeSH terms: Fetal Blood/cytology*
  4. Nordin F, Idris MRM, Mahdy ZA, Wahid SFA
    BMC Pregnancy Childbirth, 2020 Jul 10;20(1):399.
    PMID: 32650736 DOI: 10.1186/s12884-020-03084-7
    BACKGROUND: Umbilical cord blood (UCB) has been proposed as the potential source of haematopoietic stem cells (HSC) for allogeneic transplantation. However, few studies have shown that a common disease in pregnancy such as preeclampsia would affect the quality of UCB-HSC. Total nucleated cell count (TNC) is an important parameter that can be used to predict engraftment including UCB banking. Colony forming unit (CFU) assay is widely used as an indicator to predict the success of engraftment, since direct quantitative assay for HSC proliferation is unavailable. The aim of this study is to investigate the effects of preeclampsia in pregnancy on the stemness and differentiation potency of UCB-HSC.

    METHODS: Mononuclear cells (MNC) were isolated from UCB and further enriched for CD34+ cells using immune-magnetic method followed by CFU assay. A panel of HSC markers including differentiated haematopoietic markers were used to confirm the differentiation ability of UCB-HSC by flow cytometry analysis.

    RESULTS/ DISCUSSION: The HSC progenitor's colonies from the preeclampsia group were significantly lower compared to the control. This correlates with the low UCB volume, TNC and CD34+ cells count. In addition, the UCB-enriched CD34+ population were lymphoid progenitors and capable to differentiate into natural killer cells and T-lymphocytes.

    CONCLUSION: These findings should be taken into consideration when selecting UCB from preeclamptic mothers for banking and predicting successful treatment related to UCB transplant.

    Matched MeSH terms: Fetal Blood/cytology*
  5. Lau SX, Leong YY, Ng WH, Ng AWP, Ismail IS, Yusoff NM, et al.
    Cell Biol Int, 2017 Jun;41(6):697-704.
    PMID: 28403524 DOI: 10.1002/cbin.10774
    Studies showed that co-transplantation of mesenchymal stem cells (MSCs) and cord blood-derived CD34+hematopoietic stem cells (HSCs) offered greater therapeutic effects but little is known regarding the effects of human Wharton's jelly derived MSCs on HSC expansion and red blood cell (RBC) generation in vitro. This study aimed to investigate the effects of MSCs on HSC expansion and differentiation. HSCs were co-cultured with MSCs or with 10% MSCs-derived conditioned medium, with HSCs cultured under standard medium served as a control. Cell expansion rates, number of mononuclear cell post-expansion and number of enucleated cells post-differentiation were evaluated. HSCs showed superior proliferation in the presence of MSC with mean expansion rate of 3.5 × 108 ± 1.8 × 107after day 7 compared to the conditioned medium and the control group (8.9 × 107 ± 1.1 × 108and 7.0 × 107 ± 3.3 × 106respectively, P blood-derived CD34+HSCs can be greatly expanded by co-culturing with MSCs without affecting the RBC differentiation capability, suggesting the importance of direct MSC-HSCs contact in HSC expansion and RBC differentiation.
    Matched MeSH terms: Fetal Blood/cytology
  6. Fadilah SA, Vuckovic S, Khalil D, Hart DN
    Stem Cells Dev, 2007 Oct;16(5):849-55.
    PMID: 17999605
    Methods that allow expansion of myeloid dendritic cells (MDCs) from CD34(+) cells are potentially important for boosting anti-leukemic responses after cord blood (CB) hematopoietic stem cell transplantation (HSCT). We showed that the combination of early-acting cytokines FLT3-ligand (FL), stem cell factor (SCF), interleukin (IL)-3, and IL-6 supported the generation of CD11c(+)CD16() CD1a()/c() MDCs from CB CD34(+) cells or CB myeloid precursors. Early-acting cytokine-derived MDCs were maintained within the myeloid CD33(+)CD14()CD15() precursors with a mean of 4 x 10(6) cells generated from 1-4 x 10(4) CB CD34(+) cells or myeloid precursors after 2 weeks. After 8-12 days of culture the MDCs expressed higher levels of HLA-DR antigen but lower levels of CD40 and CD86 antigen, compared to adult blood MDCs. At this stage of differentiation, the early-acting cytokine-derived MDCs had acquired the ability to induce greater allogeneic T cell proliferation than monocytes or granulocytes derived from same culture. Early-acting cytokine-derived MDCs exposed to the cytokine cocktail (CC) comprising IL-1beta, IL-6, tumor necrosis factor (TNF)-alpha, and prostaglandin E (PGE)-2, upregulated the surface co-stimulatory molecules CD40 and CD86 and enhanced allogeneic T cell proliferation, as is characteristic of MDCs maturation. The reliable production of MDCs from CB CD34(+) cells provides a novel way to study their lineage commitment pathway(s) and also a potential means of enriching CB with MDCs to improve prospects for DC immunotherapy following CB HSCT.
    Matched MeSH terms: Fetal Blood/cytology*
  7. Tan KL, Chia WC, How CW, Tor YS, Show PL, Looi QHD, et al.
    Mol Biotechnol, 2021 Sep;63(9):780-791.
    PMID: 34061307 DOI: 10.1007/s12033-021-00339-2
    The objective of this study is to develop a simple protocol to isolate and characterise small extracellular vesicles (sEVs) from human umbilical cord-derived MSCs (hUC-MSCs). hUC-MSCs were characterised through analysis of morphology, immunophenotyping and multidifferentiation ability. SEVs were successfully isolated by ultrafiltration from the conditioned medium of hUC-MSCs. The sEVs' size distribution, intensity within a specific surface marker population were measured with zetasizer or nanoparticle tracking analysis. The expression of surface and internal markers of sEVs was also assessed by western blotting. Morphology of hUC-MSCs displayed as spindle-shaped, fibroblast-like adherent cells. Phenotypic analysis by flow cytometry revealed that hUC-MSCs expressed MSC surface marker, including CD90, CD73, CD105, CD44 and exhibited the capacity for osteogenic, adipogenic and chondrogenic differentiation. Populations of sEVs with CD9, CD63 and CD81 positive were detected with size distribution in the diameter of 63.2 to 162.5 nm. Typical sEVs biomarkers such as CD9, CD63, CD81, HSP70 and TSG101 were also detected with western blotting. Our study showed that sEVs from hUC-MSCs conditioned medium were successfully isolated and characterised. Downstream application of hUC-MSCs-sEVs will be further explored.
    Matched MeSH terms: Fetal Blood/cytology
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links