METHODS: A systematic review on ischemic stroke was carried out for all articles obtained from databases until 22nd October 2020. Main findings were extracted from all the eligible studies.
RESULTS: Eighteen eligible studies were included in the systematic review. These studies suggested that aging, inflammation, and different microbial compositions could contribute to ischemic stroke. Phyla Firmicutes and Bacteroidetes also appeared to manipulate post-stroke outcome. The important role of microbiota-derived short-chain fatty acids and trimethylamine N-oxide in ischemic stroke were also highlighted.
CONCLUSIONS: This is the first systematic review that investigates the relationship between microbiome and ischemic stroke. Aging and inflammation contribute to differential microbial compositions and predispose individuals to ischemic stroke.
RESULTS: Clostridiales isolates were profiled for their ability to perform 57 enzymatic reactions and produce short-chain fatty acids (SCFAs) and hydrogen sulfide, revealing that these bacteria were capable of a range of activities associated with metabolism and host response. Consistent with this finding, monocolonization of mice with individual isolates identified bacteria that were potent inducers of regulatory T-cell (Treg) differentiation in the colon. Comparisons between variables revealed by these studies identified enzymatic properties correlated with Treg induction and Trichuris egg hatching.
CONCLUSION: We identified Clostridiales species that are sufficient to induce high levels of Tregs. We also identified a set of metabolic activities linked with Treg differentiation and Trichuris egg hatching mediated by these newly isolated bacteria. Altogether, this study provides functional insights into the microbiotas of individuals residing in a helminth-endemic region. Video Abstract.
METHODS: Two hundred subjects (104 patients, 96 controls) underwent extensive clinical phenotyping. Stool samples were analyzed using 16S rRNA gene sequencing. Fecal metabolomics were performed using two platforms, nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography-mass spectrometry.
RESULTS: Fecal microbiome and metabolome composition in PD was significantly different from controls, with the largest effect size seen in NMR-based metabolome. Microbiome and NMR-based metabolome compositional differences remained significant after comprehensive confounder analyses. Differentially abundant fecal metabolite features and predicted functional changes in PD versus controls included bioactive molecules with putative neuroprotective effects (eg, short chain fatty acids [SCFAs], ubiquinones, and salicylate) and other compounds increasingly implicated in neurodegeneration (eg, ceramides, sphingosine, and trimethylamine N-oxide). In the PD group, cognitive impairment, low body mass index (BMI), frailty, constipation, and low physical activity were associated with fecal metabolome compositional differences. Notably, low SCFAs in PD were significantly associated with poorer cognition and low BMI. Lower butyrate levels correlated with worse postural instability-gait disorder scores.
INTERPRETATION: Gut microbial function is altered in PD, characterized by differentially abundant metabolic features that provide important biological insights into gut-brain pathophysiology. Their clinical relevance further supports a role for microbial metabolites as potential targets for the development of new biomarkers and therapies in PD. ANN NEUROL 2021;89:546-559.
RESULTS: Inulin decreased (P < 0.05) the average daily enteric H2 S and CH3 SH production by 12.4 and 12.1% respectively. The concentrations of acetate, propionate and butyrate in the large intestinal content were significantly increased (P < 0.05) with inulin treatment, whereas valerate concentration and MGL mRNA expression decreased (P < 0.05). The growth of Lactobacillus, Butyrivibrio, Pseudobutyrivibrio, Bifidobacterium and Clostridium butyricum was stimulated, while that of Desulfovibrio, the dominant SRB, was inhibited, and there was an accumulation of SO42- in the large intestinal content of the inulin-supplemented pigs, suggesting that inulin mitigates H2 S generation from the SO42- reduction pathway by reducing the growth of SRB.
CONCLUSION: The results showed that inulin mitigates CH3 SH generation via three methionine degradation metabolic pathways and H2 S generation from two cysteine degradation metabolic pathways, thus resulting in increased synthesis of these two sulfur-containing amino acids in the pig large intestine. © 2016 Society of Chemical Industry.