Displaying publications 1 - 20 of 72 in total

Abstract:
Sort:
  1. Ullah H, Qureshi KS, Khan U, Zaffar M, Yang YJ, Rabat NE, et al.
    Chemosphere, 2021 Dec;285:131492.
    PMID: 34273691 DOI: 10.1016/j.chemosphere.2021.131492
    The restoration of mechanical properties is desired for creating the self-healing coatings with no corrosion capabilities. The encapsulation of epoxy resins is limited by various factors in urea and melamine formaldehyde microcapsules. An improved method was developed, where epoxy resin was encapsulated by individual wrapping of poly(melamine-formaldehyde) and poly(urea-formaldehyde) shell around emulsified epoxy droplets via oil-in-water emulsion polymerization method. The synthesized materials were characterized analytically. The curing of the epoxy was achieved by adding the [Ni/Co(2-MI)6].2NO3 as a latent hardener and iron acetylacetonate [Fe(acac)3] as a latent accelerator. Isothermal and non-isothermal differential scanning calorimetric analysis revealed lower curing temperature (Tonset = 116 °C) and lower activation energies (Ea ≈ 69-75 kJ/mol). The addition of microcapsules and complexes did not adversely alter the flexural strength and flexural modulus of the epoxy coatings. The adhesion strength of neat coating decreased from 6310.8 ± 31 to 4720.9 ± 60 kPa and percent healing increased from 50.83 to 67.45% in the presence of acetylacetonate complex at 10 wt% of microcapsules.
    Matched MeSH terms: Epoxy Resins*
  2. Muhamad Hellmy Hussin
    MyJurnal
    This is a review of studies on various types of paper-based epoxy composites currently being designed and developed for technological use. The concept of designing composite materials is very significant for small to large industry and it is important where initiation of repairing work is now being considered for engineering applications. This composite material is of interest due to its advantages compared with others, including low environmental effects and low cost for a wide range of works. This review aims to provide an overview of morphological, physical and mechanical properties of various paper sheetsbased epoxy composites and details of achievements made. From this approach, this paper also presents the preliminary study of SEM results of paper sheets-based epoxy composites designed for repairing work applications. It has been found that a well-arranged laminated paper sheet layers could help the bond strength with epoxy matrix. Thus, this paper sheet-based epoxy composite can be considered as an easiest way, cheap and biodegradable that can be used for various small repairing works in structural and automotive applications.
    Matched MeSH terms: Epoxy Resins
  3. Md Shah AU, Hameed Sultan MT, Safri SNA
    Polymers (Basel), 2020 Jun 04;12(6).
    PMID: 32512848 DOI: 10.3390/polym12061288
    Six impact energy values, ranging from 2.5 J to 10 J, were applied to study the impact properties of neat epoxy and bamboo composites, while six impact energy values, ranging from 10 J to 35 J, were applied on bamboo/glass hybrid composites. Woven glass fibre was embedded at the outermost top and bottom layer of bamboo powder-filled epoxy composites, producing sandwich structured hybrid composites through lay-up and molding techniques. A drop weight impact test was performed to study the impact properties. A peak force analysis showed that neat epoxy has the stiffest projectile for targeting interaction, while inconsistent peak force data was collected for the non-hybrid composites. The non-hybrid composites could withstand up to 10 J, while the hybrid composites showed a total failure at 35 J. It can be concluded that increasing the filler loading lessened the severity of damages in non-hybrid composites, while introducing the woven glass fibre could slow down the penetration of the impactor, thus lowering the chances of a total failure of the composites.
    Matched MeSH terms: Epoxy Resins
  4. Ismail AS, Jawaid M, Hamid NH, Yahaya R, Hassan A
    Molecules, 2021 Feb 03;26(4).
    PMID: 33546097 DOI: 10.3390/molecules26040773
    Polymer blends is a well-established and suitable method to produced new polymeric materials as compared to synthesis of a new polymer. The combination of two different types of polymers will produce a new and unique material, which has the attribute of both polymers. The aim of this work is to analyze mechanical and morphological properties of bio-phenolic/epoxy polymer blends to find the best formulation for future study. Bio-phenolic/epoxy polymer blends were fabricated using the hand lay-up method at different loading of bio-phenolic (5 wt%, 10 wt%, 15 wt%, 20 wt%, and 25 wt%) in the epoxy matrix whereas neat bio-phenolic and epoxy samples were also fabricated for comparison. Results indicated that mechanical properties were improved for bio-phenolic/epoxy polymer blends compared to neat epoxy and phenolic. In addition, there is no sign of phase separation in polymer blends. The highest tensile, flexural, and impact strength was shown by P-20(biophenolic-20 wt% and Epoxy-80 wt%) whereas P-25 (biophenolic-25 wt% and Epoxy-75 wt%) has the highest tensile and flexural modulus. Based on the finding, it is concluded that P-20 shows better overall mechanical properties among the polymer blends. Based on this finding, the bio-phenolic/epoxy blend with 20 wt% will be used for further study on flax-reinforced bio-phenolic/epoxy polymer blends.
    Matched MeSH terms: Epoxy Resins/chemistry*
  5. Zainuddin NAMN, Razak NAA, Karim MSA, Osman NAA
    Sci Rep, 2023 Feb 15;13(1):2664.
    PMID: 36792914 DOI: 10.1038/s41598-022-21990-y
    Acrylic and epoxy are common types of resin used in fabricating sockets. Different types of resin will affect the internal surface of a laminated socket. This paper is to determine the best combination of ratio for epoxy and acrylic resin for a laminated prosthesis socket and to evaluate the surface profile analysis of different combinations of laminated prosthetic sockets for surface roughness. Transfemoral sockets were created using various resin-to-hardener ratios of 2:1, 3:1, 3:2, 2:3, and 1:3 for epoxy resin and 100:1, 100:2, 100:3, 100:4, and 100:5 for acrylic resin. Eight layers of stockinette consisting of four elastic stockinette and four Perlon stockinette were used. A sample with a size of 4 cm × 6 cm was cut out from the socket on the lateral side below the Greater Trochanter area. The Mitutoyo Sj-210 Surface Tester stylus was run through the sample and gave the Average Surface Roughness value (Ra), Root Mean Square Roughness value (Rq), and Ten-Point Mean Roughness value (Rz). Epoxy resin shows a smoother surface compared to acrylic resin with Ra values of is 0.766 µm, 0.9716 µm, 0.9847 µm and 1.5461 µm with 3:2, 3:1, 2:1 and 2:3 ratio respectively. However, for epoxy resin with ratio 1:3, the resin does not cure with the hardener. As for acrylic resin the Ra values are 1.0086 µm, 2.362 µm, 3.372 µm, 4.762 µm and 6.074 µm with 100: 1, 100:2, 100:5, 100:4 and 100:3 ratios, respectively. Epoxy resin is a better choice in fabricating a laminated socket considering the surface produced is smoother.
    Matched MeSH terms: Epoxy Resins*
  6. Wong KJ, Johar M, Koloor SSR, Petrů M, Tamin MN
    Polymers (Basel), 2020 Sep 22;12(9).
    PMID: 32971855 DOI: 10.3390/polym12092162
    It is necessary to consider the influence of moisture damage on the interlaminar fracture toughness for composite structures that are used for outdoor applications. However, the studies on the progressive variation of the fracture toughness as a function of moisture content M (%) is rather limited. In this regard, this study focuses on the characterization of mode II delamination of carbon/epoxy composites conditioned at 70 °C/85% relative humidity (RH). End-notched flexure test is conducted for specimens aged at various moisture absorption levels. Experimental results reveal that mode II fracture toughness degrades with the moisture content, with a maximum of 23% decrement. A residual property model is used to predict the variation of the fracture toughness with the moisture content. Through numerical simulations, it is found that the approaches used to estimate the lamina and cohesive properties are suitable to obtain reliable simulation results. In addition, the damage initiation is noticed during the early loading stage; however, the complete damage is only observed when the numerical peak load is achieved. Results from the present research could serve as guidelines to predict the residual properties and simulate the mode II delamination behavior under moisture attack.
    Matched MeSH terms: Epoxy Resins
  7. Kirmasha YK, Sharba MJ, Leman Z, Sultan MTH
    Materials (Basel), 2020 Oct 28;13(21).
    PMID: 33126437 DOI: 10.3390/ma13214801
    Fiber composites are known to have poor through-thickness mechanical properties due to the absence of a Z-direction binder. This issue is more critical with the use of natural fibers due to their low strength compared to synthetic fibers. Stitching is a through-thickness toughening method that is used to introduce fibers in the Z-direction, which will result in better through-thickness mechanical properties. This research was carried out to determine the mechanical properties of unstitched and silk fiber-stitched woven kenaf-reinforced epoxy composites. The woven kenaf mat was stitched with silk fiber using a commercial sewing machine. The specimens were fabricated using a hand lay-up method. Three specimens were fabricated, one unstitched and two silk-stitched with deferent stitching orientations. The results show that the stitched specimens have comparable in-plane mechanical properties to the unstitched specimens. For the tensile mechanical test, stitched specimens show similar and 17.1% higher tensile strength compared to the unstitched specimens. The flexural mechanical test results show around a 9% decrease in the flexural strength for the stitched specimens. On the other hand, the Izod impact mechanical test results show a significant improvement of 33% for the stitched specimens, which means that stitching has successfully improved the out-of-plane mechanical properties. The outcome of this research indicates that the stitched specimens have better mechanical performance compared to the unstitched specimens and that the decrease in the flexural strength is insignificant in contrast with the remarkable enhancement in the impact strength.
    Matched MeSH terms: Epoxy Resins
  8. Jamaluddin Mahmud, Ahmad Kamil Hussain, Norzihan Rahimi, Mastura Abdul Rahim
    MyJurnal
    The finite element method is gaining acceptance in predicting mechanical response of various loading configurations and material orientations for failure analysis of composite laminates. Both fabrication of laminate samples and experimental procedures are often expensive and time consuming, and hence impractical, especially during the initial design stage. Finite element analyses require minimal amounts of input data, and the resulting stress and strain distributions can be determined throughout each individual ply. Using ANSYSTM, a commercially available finite element package, failure loads were predicted by simulating a uniaxial tensile loading on HTS40/977-2 Carbon/Epoxy composite with [+/-4512s lamination scheme. Two built-in failure theories in ANSYSTM features, viz., Maximum Stress and Tsai-Wu were applied in the simulation. The stress-strain and load-extension curves for both actual testing and FEA were then compared and the results are in good agreement. This paper is intended for researchers who have used or are considering using ANSYSTM for the prediction of failure in composite materials.
    Matched MeSH terms: Epoxy Resins
  9. Norazean Shaari, Aidah Jumahat
    MyJurnal
    The effects of hole size on open hole tensile properties of Kevlar-glass fibre hybrid composite laminates were thoroughly investigated in this work. Woven Kevlar/glass fibre epoxy composite laminates were fabricated using hand lay-up and vacuum bagging technique. Specimens of five different hole size (1 mm, 4 mm, 6 mm, 8 mm and 12 mm) were carefully prepared before the tensile test was performed according to ASTM D5766. Results indicated that hybridizing Kevlar to glass fibres improved tensile strength and failure strain of hybrid composite specimen. In addition, increasing the hole size reduced strength retention of the hybrid specimen from 96% for 1 mm hole size to 62% and 44% for 6 mm and 12 mm, respectively. Fractography analysis showed that several types of failure mechanisms were observed such as brittle failure, ductile failure, fibre breakage, delamination and fibre-matrix splitting. It is concluded that as hole size increased, failure behaviour changed from a matrix dominated failure mode to a fibre-dominated failure mode.
    Matched MeSH terms: Epoxy Resins
  10. Noor Erna Fatini Mohd, Mariatti Jaafar, Tuti Katrina Abdullah
    MyJurnal
    Carbon fiber reinforced epoxy (CFRE) is commonly been used in automotive and aviation industries. However, CFRE composite exhibits the problem of adherence between fiber and matrix. The interface between carbon fiber (CF) and epoxy becomes a weak zone and leads to the debonding defect of fiber and low mechanical properties of composites. The main focus of this study is to fabricate CFRE using carbon nanotubes (CNTs), as the hybrid reinforcement with CF. Ultrasonic method is used to disperse CNTs in distilled water for 20 minutes, followed by deposition of CNTs on CF using electrophoretic deposition (EPD) technique. Hand lay-up assisted vacuum bagging is employed to fabricate CNTs/CF/Epoxy composite. From morphologies, surface topography and peel off testing, it can be confirmed that 30 minutes deposition allowed more CNTs to deposit on CF. The flexural properties shows that 30 minutes deposition inherited high flexural strength, 67.4 MPa and modulus, 8490 MPa.
    Matched MeSH terms: Epoxy Resins
  11. Noorhafanita Norhakim, Sahrim Ahmad, Chin HC, Nay MH
    Sains Malaysiana, 2014;43:603-609.
    In this study, graphene oxide (Go) filled epoxy nanocomposites were prepared using hot pressed method. The GO was produced using modified Hummers' method. The produced GO at different compositions (0.1, 0.3 and 0.5 wt%) were mixed with epoxy before the addition of hardener using ultra-sonication. The produced epoxy nanocomposites were characterized in terms of mechanical and thermal properties. The mechanical properties of the nanocomposites were significantly enhanced by the addition of GO. About 50% of increment in the flexural strength of the composite sample filled with 03 wt% of GO as compared to the neat epoxy sample. However, only slight improvement in the impact strength of the composite were obtained by adding 0.1 wt% of GO.
    Matched MeSH terms: Epoxy Resins
  12. Low L, Abu Bakar A
    Sains Malaysiana, 2013;42:443-448.
    Hollow epoxy particles (HEP) serving as reinforcing fillers were prepared using the water-based emulsion method in this study. HEP was incorporated into the polyester matrix at various loading, ranging from 0 wt% to 9 wt%, to toughen the brittle polyester thermoset. The polyester composites were prepared using the casting technique. The fracture toughness and impact strength of the polyester composites increased with increasing the HEP loading up to 5 wt%, after which
    there was a drop. The improvement in fracture toughness and impact strength is attributed to the good polymer-filler interaction. This finding was further supported by the scanning electron micrograph, in which it was shown that the polyester resin was interlocked into the pore regions of the HEP filler. The reduction in fracture toughness and impact strength of the polyester composite were believed to be attributed to the filler agglomeration. This filler-filler interaction would create stress concentration areas and eventually weakened the interfacial adhesion between the polymer matrix and the filler particles. Hence, lower fracture toughness and impact strength of the highly HEP-filled polyester composites (above 5 wt%) were detected.
    Matched MeSH terms: Epoxy Resins
  13. Nurul Hidayah Ismail, Mohd Hafizi Mohamad, Mariatti Jaafar
    Sains Malaysiana, 2018;47:563-569.
    This study was carried out to investigate the effect of adding 1 vol% of multi-walled carbon nanotubes (MWCNT) into
    woven kenaf/epoxy laminated composites on their flexural properties and to compare between two techniques used to
    incorporate MWCNT into the composite which are spraying and solution techniques. Furthermore, the effect of MWCNT
    addition in woven glass/woven kenaf/epoxy hybrid composites at the same filler concentration on the flexural properties
    were also investigated. All the laminated composites with and without MWCNT were fabricated using vacuum bagging
    method. The flexural properties of the composite samples with and without MWCNT were evaluated by applying threepoint
    bending test. The results were supported by morphological observation. It was found that the addition of MWCNT
    using both spraying and solution techniques reduced the flexural strength and flexural modulus of MWCNT/woven kenaf/
    epoxy composites, with obvious reduction trend was shown by former technique. The morphological observation of the
    composites fracture surface showed that delamination failure occurred in MWCNT/woven kenaf/epoxy laminated composite
    prepared by spraying technique. Further investigation on hybrid composites showed that MWCNT/woven glass/woven
    kenaf/epoxy laminated hybrid composites exhibited significant improvement in the flexural properties.
    Matched MeSH terms: Epoxy Resins
  14. Bajuri, F., Mazlan, N., Ishak, M.R.
    MyJurnal
    Kenaf natural fibre is used as a sustainable form of material to reinforce polymeric composite. However, natural fibres usually do not perform as well as synthetic fibres. Silica nanoparticle is a material with high surface area and its high interfacial interaction with the matrix results in its improvement. In this research, silica nanoparticles were introduced into epoxy resin as a filler material to improve the mechanical properties of the kenaf-reinforced epoxy. They were dispersed into the epoxy using a homogeniser at 3000 rpm for 10 minutes. The composites were fabricated by spreading the silica filled epoxy evenly onto the kenaf mat before hot pressing the resin wet kenaf mat. The results show for flexural properties, composites with higher fibre and silica volume content generally had better properties with specimen 601 (60 vol% kenaf and1 vol% silica) having the highest strength at 68.9 MPa. Compressive properties were erratic with specimen 201 (20 vol% kenaf and 1 vol% silica) having the highest strength at 53.6 MPa.
    Matched MeSH terms: Epoxy Resins
  15. Thiagamani SMK, Krishnasamy S, Muthukumar C, Tengsuthiwat J, Nagarajan R, Siengchin S, et al.
    Int J Biol Macromol, 2019 Nov 01;140:637-646.
    PMID: 31437507 DOI: 10.1016/j.ijbiomac.2019.08.166
    This work focuses on the fabrication of hybrid bio-composites using green epoxy as the matrix material, hemp (H) and sisal (S) fibre mats as the reinforcements. The hybrid composite with sisal/hemp fibres were fabricated by cost effective hand lay-up technique, followed by hot press with different stacking sequences. Static properties of the composites such as tensile, compressive, inter-laminar shear strengths (ILSS) and hardness were examined. The physical properties such as density, void content, water absorption and thickness swelling were also analyzed. The experimental results indicate that hybrid composites exhibited minor variation in tensile strength when the stacking sequence was altered. The hybrid composite with the intercalated arrangement (HSHS) exhibited the highest tensile modulus when compared with the other hybrid counterparts. Hybrid composites (SHHS and HSSH) offered 40% higher values of compressive strength than the other layering arrangements. HHHH sample exhibited the highest ILSS value of 4.08 MPa. Typical failure characteristics of the short beam test such as inter-laminar shear cracks in the transverse direction, micro-buckling and fibre rupture were also observed.
    Matched MeSH terms: Epoxy Resins/chemistry*
  16. Saba N, Mohammad F, Pervaiz M, Jawaid M, Alothman OY, Sain M
    Int J Biol Macromol, 2017 Apr;97:190-200.
    PMID: 28082223 DOI: 10.1016/j.ijbiomac.2017.01.029
    Present study, deals about isolation and characterization of cellulose nanofibers (CNFs) from the Northern Bleached Softwood Kraft (NBSK) pulp, fabrication by hand lay-up technique and characterization of fabricated epoxy nanocomposites at different filler loadings (0.5%, 0.75%, 1% by wt.). The effect of CNFs loading on mechanical (tensile, impact and flexural), morphological (scanning electron microscope and transmission electron microscope) and structural (XRD and FTIR) properties of epoxy composites were investigated. FTIR analysis confirms the introduction of CNFs into the epoxy matrix while no considerable change in the crystallinity and diffraction peaks of epoxy composites were observed by the XRD patterns. Additions of CNFs considerably enhance the mechanical properties of epoxy composites but a remarkable improvement is observed for 0.75% CNFs as compared to the rest epoxy nanocomposites. In addition, the electron micrographs revealed the perfect distribution and dispersion of CNFs in the epoxy matrix for the 0.75% CNFs/epoxy nanocomposites, while the existence of voids and agglomerations were observed beyond 0.75% CNFs filler loadings. Overall results analysis clearly revealed that the 0.75% CNFs filler loading is best and effective with respect to rest to enhance the mechanical and structural properties of the epoxy composites.
    Matched MeSH terms: Epoxy Resins/chemistry*
  17. Lin GSS, Ghani NRNA, Noorani TY, Ismail NH, Mamat N
    Odontology, 2021 Jan;109(1):149-156.
    PMID: 32623538 DOI: 10.1007/s10266-020-00535-7
    To compare the dislodgement resistance and the adhesive pattern of four different endodontic sealers to root dentine walls. Ninety lower premolars were assigned to five groups (n = 18), Group 1: no sealer (control); Group 2: EndoRez (ERZ); Group 3: Sealapex (SPX); Group 4: EndoSeal MTA (ESA) and Group 5: BioRoot RCS (BRS). They were instrumented up to size 30 taper 0.06 and obturated using single cone technique with matched-taper gutta-percha cones and one of the mentioned sealers. Six teeth from each group were then randomly subjected to 100, 1000 and 10,000 thermocycles, respectively. 1 mm slice of mid root region, measuring 6 mm from the apical foramen was prepared and subjected to push-out test under a Universal Testing Machine. Adhesive patterns of sealers were assessed using a stereomicroscope at 20 × magnification and classified using a new system. Statistical analyses were performed using two-way ANOVA, complemented by Tukey HSD and Chi-square tests. ESA and BRS showed significantly higher (p  0.05) at 100, 1000 and 10,000 thermocycles, respectively. Both ESA and BRS exhibited a significant higher rate (p 
    Matched MeSH terms: Epoxy Resins
  18. Abdulhameed AS, Jawad AH, Mohammad AT
    Bioresour Technol, 2019 Dec;293:122071.
    PMID: 31491651 DOI: 10.1016/j.biortech.2019.122071
    Chitosan-ethylene glycol diglycidyl ether/TiO2 nanoparticles (CS-EGDE/TNP) composite was synthesized to be biosorbent for the removal of reactive orange 16 (RO16) dye from aqueous solution. The CS-EGDE/TNP composite was characterized via BET, XRD, FTIR, and SEM-EDX techniques. Response surface methodology (RSM) with Box-Behnken design (BBD) was applied to optimize the adsorption key parameters such as adsorbent dose (A: 0.02-0.08 g/L), RO16 dye concentration (B: 20-80 mg/L), solution pH (C: 4-10), temperature (D: 30-50 °C), and contact time (E: 30-90 min). The adsorption isotherm followed Freundlich model and pseudo-second order (PSO) kinetic model. The adsorption capacity of CS-EGDE/TNP for RO16 dye was 1407.4 mg/g at 40 °C. The adsorption mechanism of RO16 dye on the surface of CS-EGDE/TNP can be attributed to various interactions such as electrostatic attraction, n-π interaction, Yoshida H-bonding, and H-bonding. Results supported the potential use of CS-EGDE/TNP as effective adsorbent for the treatment of acid reactive dye.
    Matched MeSH terms: Epoxy Resins
  19. Ikramullah, Rizal S, Nakai Y, Shiozawa D, Khalil HPSA, Huzni S, et al.
    Materials (Basel), 2019 Jul 10;12(14).
    PMID: 31295885 DOI: 10.3390/ma12142225
    The aim of this paper is to evaluate the Mode II interfacial fracture toughness and interfacial shear strength of Typha spp. fiber/PLLA and Typha spp. fiber/epoxy composite by using a double shear stress method with 3 fibers model composite. The surface condition of the fiber and crack propagation at the interface between the fiber and the matrix are observed by scanning electron microscope (SEM). Alkali treatment on Typha spp. fiber can make the fiber surface coarser, thus increasing the value of interfacial fracture toughness and interfacial shear strength. Typha spp. fiber/epoxy has a higher interfacial fracture value than that of Typha spp. fiber/PLLA. Interfacial fracture toughness on Typha spp. fiber/PLLA and Typha spp. fiber/epoxy composite model specimens were influenced by the matrix length, fiber spacing, fiber diameter and bonding area. Furthermore, the interfacial fracture toughness and the interfacial fracture shear stress of the composite model increased with the increasing duration of the surface treatment.
    Matched MeSH terms: Epoxy Resins
  20. Ahmad Fuad Ab Ghani, Mohd Irman Ramli, Ridhwan Jumaidin, Dharmalingam, Sivakumar, Fudhail Abdul Munir, Mohd Syukri Yob
    MyJurnal
    The study of Representative Volume Element (RVE) on Composite Material has been performed in the aim to obtain the relation and effect of fiber volume fraction on its tensile properties which is one of the important mechanical properties for composite designers in automotive and aerospace community.The properties such as fibre content, orientation, dimension of constituent fibres (diameter), level of intermixing of fibres, interface bonding between fibre and matrix, and arrangement of fibres between different types of fibres, influences the mechanical properties of hybrid composite.Representative Volume Element (RVE) for each constituent Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP) assumed isotropic behavior for carbon fibre, glass fibre and epoxy resin matrix and assumed to be perfectly bonded interface between fibre and matrix region i.e. strain compatibility at the interface. The scope of study on the micro mechanical modelling via representative volume element (RVE) is limited only to unidirectional composites.The result of parametric study performed deduces that incremental volume fraction of carbon and glass respectively will increase the E11 (Modulus of Elasticity in Tensile Direction) and enhance the tensile properties of both CFRP and GFRP.
    Matched MeSH terms: Epoxy Resins
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links