Displaying all 11 publications

Abstract:
Sort:
  1. Garrido-Palazuelos LI, Almanza-Orduño AA, Waseem M, Basheer A, Medrano-Félix JA, Mukthar M, et al.
    J Mol Graph Model, 2024 Nov;132:108848.
    PMID: 39182254 DOI: 10.1016/j.jmgm.2024.108848
    Staphylococcus aureus is a common bacterium that causes a variety of infections in humans. This microorganism produces several virulence factors, including hemolysins, which contribute to its disease-causing ability. The treatment of S. aureus infections typically involves the use of antibiotics. However, the emergence of antibiotic-resistant strains has become a major concern. Therefore, vaccination against S. aureus has gained attention as an alternative approach. Vaccination has the advantage of stimulating the immune system to produce specific antibodies that can neutralize bacteria and prevent infection. However, developing an effective vaccine against S. aureus has proven to be challenging. This study aimed to use in silico methods to design a multi-epitope vaccine against S. aureus infection based on hemolysin proteins. The designed vaccine contained four B-cell epitopes, four CTL epitopes, and four HTL epitopes, as well as the ribosomal protein L7/L12 and pan-HLA DR-binding epitope, included as adjuvants. Furthermore, the vaccine was non-allergenic and non-toxic with the potential to stimulate the TLR2-, TLR-4, and TLR-6 receptors. The predicted vaccine exhibited a high degree of antigenicity and stability, suggesting potential for further development as a viable vaccine candidate. The population coverage of the vaccine was 94.4 %, indicating potential widespread protection against S. aureus. Overall, these findings provide valuable insights into the design of an effective multi-epitope vaccine against S. aureus infection and pave the way for future experimental validations.
    Matched MeSH terms: Epitopes/chemistry
  2. Chin CF, Teh BA, Anthony AA, Aziah I, Ismail A, Ong EB, et al.
    Appl Biochem Biotechnol, 2014 Nov;174(5):1897-906.
    PMID: 25149461 DOI: 10.1007/s12010-014-1173-y
    In our earlier study, an immunoblot analysis using sera from febrile patients revealed that a 50-kDa band from an outer membrane protein fraction of Salmonella enterica serovar Typhi was specifically recognized only by typhoid sera and not sera from other febrile illnesses. Here, we investigated the identities of the proteins contained in the immunogenic 50-kDa band to pinpoint antigens responsible for its immunogenicity. We first used LC-MS/MS for protein identification, then used the online tool ANTIGENpro for antigenicity prediction and produced recombinant proteins of the lead antigens for validation in an enzyme-linked immunosorbent assay (ELISA). We found that proteins TolC, GlpK and SucB were specific to typhoid sera but react to antibodies differently under native and denatured conditions. This difference suggests the presence of linear and conformational epitopes on these proteins.
    Matched MeSH terms: Epitopes/chemistry*
  3. Shamsuddin SH, Jayne DG, Tomlinson DC, McPherson MJ, Millner PA
    Sci Rep, 2021 01 12;11(1):744.
    PMID: 33436840 DOI: 10.1038/s41598-020-80354-6
    Carcinoembryonic antigen (CEA) is the only blood based protein biomarker at present, used for preoperative screening of advanced colorectal cancer (CRC) patients to determine the appropriate curative treatments and post-surveillance screening for tumour recurrence. Current diagnostics for CRC detection have several limitations and development of a highly sensitive, specific and rapid diagnostic device is required. The majority of such devices developed to date are antibody-based and suffer from shortcomings including multimeric binding, cost and difficulties in mass production. To circumvent antibody-derived limitations, the present study focused on the development of Affimer proteins as a novel alternative binding reagent for CEA detection. Here, we describe the selection, from a phage display library, of Affimers specific to CEA protein. Characterization of three anti-CEA Affimers reveal that these bind specifically and selectively to protein epitopes of CEA from cell culture lysate and on fixed cells. Kinetic binding analysis by SPR show that the Affimers bind to CEA with high affinity and within the nM range. Therefore, they have substantial potential for used as novel affinity reagents in diagnostic imaging, targeted CRC therapy, affinity purification and biosensor applications.
    Matched MeSH terms: Epitopes/chemistry
  4. Reginald K, Pang SL, Chew FT
    Sci Rep, 2019 Aug 22;9(1):12239.
    PMID: 31439916 DOI: 10.1038/s41598-019-48688-y
    Blomia tropicalis has been recognized as a cause of allergic diseases in the tropical and subtropical regions. Here we report the immuno-characterization of its group 2 allergen, Blo t 2. Allergen Blo t 2 was amplified from the cDNA of B. tropicalis using degenerate primers, expressed in Escherichia coli as a recombinant protein and purified to homogeneity. The mature protein of Blo t 2 was 126 amino acids long with 52% sequence identity to Der p 2 and apparent molecular mass of 15 kDa. Circular dichroism spectroscopy showed that Blo t 2 is mainly a beta-sheeted protein. We confirmed the presence of three disulfide bonds in recombinant (r) Blo t 2 protein using electrospray mass spectrometry. Thirty-four percent of dust-mite allergic individuals from the Singapore showed specific IgE binding to rBlo t 2 as tested using immuno dot-blots. IgE-cross reactivity assays showed that Blo t 2 had between 20-50% of unique IgE-epitopes compared to Der p 2. IgE binding of native and recombinant forms of Blo t 2 were highly concordant (r2 = 0.77, p 
    Matched MeSH terms: Epitopes/chemistry
  5. Azmi F, Ahmad Fuaad AA, Giddam AK, Batzloff MR, Good MF, Skwarczynski M, et al.
    Bioorg Med Chem, 2014 Nov 15;22(22):6401-8.
    PMID: 25438764 DOI: 10.1016/j.bmc.2014.09.042
    Peptides are of great interest to be used as vaccine antigens due to their safety, ease of manufacturing and specificity in generating immune response. There have been massive discoveries of peptide antigens over the past decade. However, peptides alone are poorly immunogenic, which demand co-administration with strong adjuvant to enhance their immunogenicity. Recently, fibril-forming peptides such as Q11 and lipoamino acid-based carrier have been identified to induce substantial immune responses when covalently linked to peptide epitope. In this study, we have incorporated either Q11 or lipoamino acids to a peptide epitope (J14) derived from M protein of group A streptococcus to develop self-adjuvanting vaccines. J14, Q11 and lipoamino acids were also conjugated together in a single vaccine construct in an attempt to evaluate the synergy effect of combining multiple adjuvants. Physicochemical characterization demonstrated that the vaccine constructs folded differently and self-assembled into nanoparticles. Significantly, only vaccine constructs containing double copies of lipoamino acids (regardless in conjugation with Q11 or not) were capable to induce significant dendritic cells uptake and subsequent J14-specific antibody responses in non-sizes dependent manners. Q11 had minimal impact in enhancing the immunogenicity of J14 even when it was used in combination with lipoamino acids. These findings highlight the impact of lipoamino acids moiety as a promising immunostimulant carrier and its number of attachment to peptide epitope was found to have a profound effect on the vaccine immunogenicity.
    Matched MeSH terms: Epitopes/chemistry
  6. Tan CS, Cardosa MJ
    Arch Virol, 2007;152(6):1069-73.
    PMID: 17318736
    Human enterovirus 71 has emerged as an important pathogen of children in the Asia Pacific region, and it may be important to consider the development of a vaccine against this virus. Human cord serum was used as a source of neutralizing antibodies to determine whether the N- or C-terminal half of the VP1 capsid protein was more likely to harbour neutralizing determinants. Cord sera from 205 individuals were tested for neutralizing antibodies against human enterovirus 71 in an indirect ELISA against recombinant VP1 antigen as well as the N- and C-terminal portions of VP1 antigen. High-titred human neutralizing antibodies were significantly more reactive with the N-terminal half of VP1 than weak or negative sera. The N-terminal half of human enterovirus 71 is likely to have important neutralizing antibody determinants and should be investigated further in vaccine development efforts.
    Matched MeSH terms: Epitopes/chemistry
  7. Eshaghi M, Tan WS, Yusoff K
    J Med Virol, 2005 Jan;75(1):147-52.
    PMID: 15543570
    A random peptide library of heptamers displayed on the surface of M13 bacteriophage was used to identify specific epitopes of antibodies in pooled sera of swine naturally infected by Nipah virus. The selected heptapeptides were aligned with protein sequences of Nipah virus and several putative epitopes were identified within the nucleocapsid protein. A total of 41 of 60 (68%) selected phage clones had inserts resembling a region with the sequence SNRTQGE, located at the C-terminal end (amino acids 503-509) of the nucleocapsid protein. The binding of antibodies in the swine and human antisera to the phage clone was inhibited by a synthetic peptide corresponding to this region. Epitopes identified by phage display are consistent with the predicted antigenic sites for the Nipah virus nucleocapsid protein. The selected phage clone used as a coating antigen discriminated swine and human Nipah virus sera-positive from sera-negative samples exhibiting characteristics, which might be attractive for diagnostic tests.
    Matched MeSH terms: Epitopes/chemistry
  8. Nyon MP, Du L, Tseng CK, Seid CA, Pollet J, Naceanceno KS, et al.
    Vaccine, 2018 03 27;36(14):1853-1862.
    PMID: 29496347 DOI: 10.1016/j.vaccine.2018.02.065
    Middle East respiratory syndrome coronavirus (MERS-CoV) has infected at least 2040 patients and caused 712 deaths since its first appearance in 2012, yet neither pathogen-specific therapeutics nor approved vaccines are available. To address this need, we are developing a subunit recombinant protein vaccine comprising residues 377-588 of the MERS-CoV spike protein receptor-binding domain (RBD), which, when formulated with the AddaVax adjuvant, it induces a significant neutralizing antibody response and protection against MERS-CoV challenge in vaccinated animals. To prepare for the manufacture and first-in-human testing of the vaccine, we have developed a process to stably produce the recombinant MERS S377-588 protein in Chinese hamster ovary (CHO) cells. To accomplish this, we transfected an adherent dihydrofolate reductase-deficient CHO cell line (adCHO) with a plasmid encoding S377-588 fused with the human IgG Fc fragment (S377-588-Fc). We then demonstrated the interleukin-2 signal peptide-directed secretion of the recombinant protein into extracellular milieu. Using a gradually increasing methotrexate (MTX) concentration to 5 μM, we increased protein yield by a factor of 40. The adCHO-expressed S377-588-Fc recombinant protein demonstrated functionality and binding specificity identical to those of the protein from transiently transfected HEK293T cells. In addition, hCD26/dipeptidyl peptidase-4 (DPP4) transgenic mice vaccinated with AddaVax-adjuvanted S377-588-Fc could produce neutralizing antibodies against MERS-CoV and survived for at least 21 days after challenge with live MERS-CoV with no evidence of immunological toxicity or eosinophilic immune enhancement. To prepare for large scale-manufacture of the vaccine antigen, we have further developed a high-yield monoclonal suspension CHO cell line.
    Matched MeSH terms: Epitopes/chemistry
  9. Sorokin EV, Tsareva TR, Sominina AA, Pisareva MM, Komissarov AV, Kosheleva AA, et al.
    Vopr. Virusol., 2014;59(6):27-31.
    PMID: 25929033
    A panel of five monoclonal antibodies (MAbs) to the HA1 molecule of the influenza B virus of the Victorian lineage with high virus-neutralizing activity was developed. For identification of the virus neutralizing epitopes in HA1 escape mutants (EM) of the influenza BIShandong/07/97 and B/Malaysia/2506/04 virus were selected using virus- neutralizing antibodies (MAbs). Three EMs had single, two--double and one--triple amino acid substitutions (AAS) in HA1 (H122N, A202E, K203T, K2031, K203N or A317V). In addition, AAS N197S was detected in three EMs. A correlation of AAS identified with peculiarities of interaction of EMs with Mabs was discussed.
    Matched MeSH terms: Epitopes/chemistry*
  10. Arif SA, Hamilton RG, Yusof F, Chew NP, Loke YH, Nimkar S, et al.
    J Biol Chem, 2004 Jun 04;279(23):23933-41.
    PMID: 15024009
    Recurring reports of a highly allergenic 42-46-kDa protein in Hevea brasiliensis latex appeared to have been resolved with the discovery of a 43-kDa allergenic latex protein that was a homologue to patatin. However, the low to moderate prevalence of sensitization to the protein, designated Hev b 7, among latex-allergic patients could not adequately explain the frequent observations of the 42-46-kDa allergen. This led to the hypothesis that another, more allergenic protein of a similar molecular mass existed in Hevea latex. We report the isolation and purification of a 42.98-kDa latex glycoprotein showing homology to the early nodule-specific protein (ENSP) of the legumes Medicago sativa, Medicago truncatula, and Glycine max. The protein is allergenic, being recognized by immunoglobulin E (IgE) in sera from latex-allergic patients. The IgE epitope resides on the carbohydrate moiety of the protein, and the presence of a similar carbohydrate component on potato tuber patatin enables the latter to inhibit IgE binding to the ENSP homologue. The cDNA encoding the ENSP homologue was isolated by reverse transcription-PCR and cloned. The protein predicted from the cDNA sequence has 391 amino acids, the first 26 of which constitute a putative signal peptide. The deduced molecular mass of the mature protein is 40.40 kDa, while its isoelectric point is estimated at 5.0. The discrepancy between the predicted and observed molecular mass might be due to glycosylation, for which three N-sites on the protein are predicted. The purified protein showed lipase and esterase activities and may be involved in plant defense.
    Matched MeSH terms: Epitopes/chemistry
  11. Mahlangu JN, Weldingh KN, Lentz SR, Kaicker S, Karim FA, Matsushita T, et al.
    J Thromb Haemost, 2015 Nov;13(11):1989-98.
    PMID: 26362483 DOI: 10.1111/jth.13141
    BACKGROUND: Vatreptacog alfa, a recombinant human factor VIIa (rFVIIa) analog developed to improve the treatment of bleeds in hemophilia patients with inhibitors, differs from native FVIIa by three amino acid substitutions. In a randomized, double-blind, crossover, confirmatory phase III trial (adept(™) 2), 8/72 (11%) hemophilia A or B patients with inhibitors treated for acute bleeds developed anti-drug antibodies (ADAs) to vatreptacog alfa.

    OBJECTIVES: To characterize the formation of anti-vatreptacog alfa ADAs in hemophilia patients with inhibitors.

    METHODS/PATIENTS: This was a post hoc analysis of adept(™) 2. Immunoglobulin isotype determination, specificity analysis of rFVIIa cross-reactive antibodies, epitope mapping of rFVIIa single mutant analogs and pharmacokinetic (PK) profiling were performed to characterize the ADAs.

    RESULTS: Immunoglobulin isotyping indicated that the ADAs were of the immunoglobulin G subtype. In epitope mapping, none of the rFVIIa single mutant analogs (V158D, E296V or M298Q) contained the complete antibody epitope, confirming that the antibodies were specific for vatreptacog alfa. In two patients, for whom PK profiling was performed both before and after the development of ADAs, vatreptacog alfa showed a prolonged elimination phase following ADA development. During the follow-up evaluation, the rFVIIa cross-reactivity disappeared after the last vatreptacog alfa exposure, despite continued exposure to rFVIIa as part of standard care.

    CONCLUSIONS: Results from the vatreptacog alfa phase III trial demonstrate that the specific changes made, albeit relatively small, to the FVIIa molecule alter its clinical immunogenicity.

    Matched MeSH terms: Epitopes/chemistry
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links