Displaying all 5 publications

Abstract:
Sort:
  1. Liong MT
    Nutr Rev, 2008 Apr;66(4):192-202.
    PMID: 18366533 DOI: 10.1111/j.1753-4887.2008.00024.x
    The long history of safety has contributed to the acceptance of probiotics as a safe food adjunct. Consequently, many probiotic products and their applications have been granted GRAS (generally regarded as safe) status. However, this classification has been frequently generalized for all probiotic strains regardless of their application. Cases of probiotics from the genera Lactobacillus, Leuconostoc, Pediococcus, Enterococcus, and Bifidobacterium have been isolated from infection sites, leading to the postulation that these probiotics can translocate. Probiotic translocation is difficult to induce in healthy humans, and even if it does occur, detrimental effects are rare. Despite this, various reports have documented health-damaging effects of probiotic translocation in immunocompromised patients. Due to probiotics' high degree of safety and their morphological confusion with other pathogenic bacteria, they are often overlooked as contaminants and are least suspected as pathogens. However, the antibiotic resistance of some strains has increased the complexity of their eradication. Probiotic translocation and infection deserve further investigation and should become a facet of safety assessment so the negative effects of probiotics do not outweigh the benefits.
    Matched MeSH terms: Enterococcus/physiology
  2. Nami Y, Abdullah N, Haghshenas B, Radiah D, Rosli R, Khosroushahi AY
    J Med Microbiol, 2014 Aug;63(Pt 8):1044-1051.
    PMID: 24913559 DOI: 10.1099/jmm.0.074161-0
    Forty-five lactic acid bacteria (LAB) were isolated from the vaginal specimens of healthy fertile women, and the identities of the bacteria were confirmed by sequencing of their 16S rDNA genes. Among these bacteria, only four isolates were able to resist and survive in low pH, bile salts and simulated in vitro digestion conditions. Lactococcus lactis 2HL, Enterococcus durans 6HL, Lactobacillus acidophilus 36YL and Lactobacillus plantarum 5BL showed the best resistance to these conditions. These strains were evaluated further to assess their ability to adhere to human intestinal Caco-2 cells. Lactococcus lactis 2HL and E. durans 6HL were the most adherent strains. In vitro tests under neutralized pH proved the antimicrobial activity of both strains. Results revealed that the growth of Escherichia coli O26, Staphylococcus aureus and Shigella flexneri was suppressed by both LAB strains. The antibiotic susceptibility tests showed that these strains were sensitive to all nine antibiotics: vancomycin, tetracycline, ampicillin, penicillin, gentamicin, erythromycin, clindamycin, sulfamethoxazole and chloramphenicol. These data suggest that E. durans 6HL and Lactococcus lactis 2HL could be examined further for their useful properties and could be developed as new probiotics.
    Matched MeSH terms: Enterococcus/physiology
  3. Dada AC, Ahmad A, Usup G, Heng LY, Hamid R
    Environ Monit Assess, 2013 Sep;185(9):7427-43.
    PMID: 23417753 DOI: 10.1007/s10661-013-3110-x
    We report the first study on the occurrence of high-level aminoglycoside-resistant (HLAR) Enterococci in coastal bathing waters and beach sand in Malaysia. None of the encountered isolates were resistant to high levels of gentamicin (500 μg/mL). However, high-level resistance to kanamycin (2,000 μg/mL) was observed in 14.2 % of tested isolates, the highest proportions observed being among beach sand isolates. High-level resistance to kanamycin was higher among Enterococcus faecalis and Enterococcus faecium than Enterococcus spp. Chi-square analysis showed no significant association between responses to tested antibiotics and the species allocation or source of isolation of all tested Enterococci. The species classification of encountered Enterococci resistance to vancomycin was highest among Enterococcus spp. (5.89 %) followed by E. faecium (4.785) and least among E. faecalis. A total of 160 isolates were also tested for virulence characteristics. On the whole, caseinase production was profoundly highest (15.01 %) while the least prevalent virulence characteristic observed among tested beach Enterococci was haemolysis of rabbit blood (3.65 %). A strong association was observed between the source of isolation and responses for each of caseinase (C = 0.47, V = 0.53) and slime (C = 0.50, V = 0.58) assays. Analysis of obtained spearman's coefficient showed a strong correlation between caseinase and each of the slime production (p = 0.04), gelatinase (p = 0.0035) and haemolytic activity on horse blood (p = 0.004), respectively. Suggestively, these are the main virulent characteristics of the studied beach Enterococci. Our findings suggest that recreational beaches may contribute to the dissemination of Enterococci with HLAR and virulence characteristics.
    Matched MeSH terms: Enterococcus/physiology*
  4. Lau CP, Abdul-Wahab MF, Jaafar J, Chan GF, Abdul Rashid NA
    J Microbiol Immunol Infect, 2017 Aug;50(4):427-434.
    PMID: 26427880 DOI: 10.1016/j.jmii.2015.08.004
    BACKGROUND/PURPOSE: Currently, silver nanoparticles (AgNPs) have gained importance in various industrial applications. However, their impact upon release into the environment on microorganisms remains unclear. The aim of this study was to analyze the effect of polyvinylpyrrolidone-capped AgNPs synthesized in this laboratory on two bacterial strains isolated from the environment, Gram-negative Citrobacter sp. A1 and Gram-positive Enterococcus sp. C1.

    METHODS: Polyvinylpyrrolidone-capped AgNPs were synthesized by ultrasound-assisted chemical reduction. Characterization of the AgNPs involved UV-visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, and energy dispersive X-ray spectroscopy. Citrobacter sp. A1 and Enterococcus sp. C1 were exposed to varying concentrations of AgNPs, and cell viability was determined. Scanning electron microscopy was performed to evaluate the morphological alteration of both species upon exposure to AgNPs at 1000 mg/L.

    RESULTS: The synthesized AgNPs were spherical in shape, with an average particle size of 15 nm. The AgNPs had different but prominent effects on either Citrobacter sp. A1 or Enterococcus sp. C1. At an AgNP concentration of 1000 mg/L, Citrobacter sp. A1 retained viability for 6 hours, while Enterococcus sp. C1 retained viability only for 3 hours. Citrobacter sp. A1 appeared to be more resistant to AgNPs than Enterococcus sp. C1. The cell wall of both strains was found to be morphologically altered at that concentration.

    CONCLUSION: Minute and spherical AgNPs significantly affected the viability of the two bacterial strains selected from the environment. Enterococcus sp. C1 was more vulnerable to AgNPs, probably due to its cell wall architecture and the absence of silver resistance-related genes.

    Matched MeSH terms: Enterococcus/physiology
  5. Chan GF, Gan HM, Rashid NA
    J Bacteriol, 2012 Oct;194(20):5716-7.
    PMID: 23012290
    Enterococcus sp. strain C1 is a facultative anaerobe which was coisolated with Citrobacter sp. strain A1 from a sewage oxidation pond. Strain C1 could degrade azo dyes very efficiently via azo reduction and desulfonation in a microaerophilic environment. Here the draft genome sequence of Enterococcus sp. C1 is reported.
    Matched MeSH terms: Enterococcus/physiology
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links