Displaying all 3 publications

Abstract:
Sort:
  1. Angal L, Mahmud R, Samin S, Yap NJ, Ngui R, Amir A, et al.
    BMC Infect Dis, 2015 Oct 29;15:467.
    PMID: 26511347 DOI: 10.1186/s12879-015-1178-3
    BACKGROUND: The prison management in Malaysia is proactively seeking to improve the health status of the prison inmates. Intestinal parasitic infections (IPIs) are widely distributed throughout the world and are still gaining great concern due to their significant morbidity and mortality among infected humans. In Malaysia, there is a paucity of information on IPIs among prison inmates. In order to further enhance the current health strategies employed, the present study aims to establish firm data on the prevalence and diversity of IPIs among HIV-infected and non-HIV-infected individuals in a prison, an area in which informed knowledge is still very limited.

    METHODS: Samples were subjected to microscopy examination and serological test (only for Strongyloides). Speciation for parasites on microscopy-positive samples and seropositive samples for Strongyloides were further determined via polymerase chain reaction. SPSS was used for statistical analysis.

    RESULTS: A total of 294 stool and blood samples each were successfully collected, involving 131 HIV positive and 163 HIV negative adult male inmates whose age ranged from 21 to 69-years-old. Overall prevalence showed 26.5% was positive for various IPIs. The IPIs detected included Blastocystis sp., Strongyloides stercoralis, Entamoeba spp., Cryptosporidium spp., Giardia spp., and Trichuris trichiura. Comparatively, the rate of IPIs was slightly higher among the HIV positive inmates (27.5%) than HIV negative inmates (25.8%). Interestingly, seropositivity for S. stercoralis was more predominant in HIV negative inmates (10.4%) compared to HIV-infected inmates (6.9%), however these findings were not statistically significant. Polymerase chain reaction (PCR) confirmed the presence of Blastocystis, Strongyloides, Entamoeba histolytica and E. dispar.

    CONCLUSIONS: These data will enable the health care providers and prison management staff to understand the trend and epidemiological situations in HIV/parasitic co-infections in a prison. This information will further assist in providing evidence-based guidance to improve prevention, control and management strategies of IPIs co-infections among both HIV positive and HIV negative inmates in a prison environment.

    Matched MeSH terms: Entamoeba histolytica/pathogenicity
  2. Nhidza AF, Naicker T, Stray-Pedersen B, Chisango TJ, Sibanda EP, Ismail A, et al.
    J Microbiol Immunol Infect, 2020 Aug;53(4):612-621.
    PMID: 30583941 DOI: 10.1016/j.jmii.2018.11.005
    BACKGROUND: Asymptomatic Entamoeba histolytica infections in pregnant women puts infants at risk of infection through vertical transmission or transmission during breastfeeding in high HIV prevalence areas. The study aimed at investigating the immune response to asymptomatic E.histolytica infection in pregnant women and their infants in a high HIV burdened setting in Harare, Zimbabwe.

    METHODOLOGY: Serum samples from 39 predominantly breastfeeding mother-infant pairs were analyzed for inflammatory cytokine and immunoglobulin profiles using BIOPLEX. The infants' ages ranged from 10 days to 14 weeks.

    RESULTS: IL-1r, IL-4, IL-9, IL-12p70, IL-17a, G-CSF and PDGF-BB were significantly raised in E. histolytica infected compared to non-infected lactating mothers (p histolytica significantly increased concentration levels of IL-1r, IL-4, IL-9, IL-10, IL-12p70, IL17a, G-CSF, GM-CSF, IFN-γ, PDGF-BB and TNF-α cytokines (p histolytica infection (p histolytica carriage and HIV exposure had no significant impact on the cytokine and immunoglobulin concentrations.

    CONCLUSION: Pro-inflammatory cytokines and chemokines are highly raised in lactating mothers with asymptomatic enteric pathogens hence there is need to check cytokine profiles in pregnant women and their infants to assist in decision making linked to treatment and prevention in times of pandemics.

    Matched MeSH terms: Entamoeba histolytica/pathogenicity
  3. Ng YL, Olivos-García A, Lim TK, Noordin R, Lin Q, Othman N
    Am J Trop Med Hyg, 2018 12;99(6):1518-1529.
    PMID: 30298805 DOI: 10.4269/ajtmh.18-0415
    Entamoeba histolytica is a protozoan parasite that causes amebiasis and poses a significant health risk for populations in endemic areas. The molecular mechanisms involved in the pathogenesis and regulation of the parasite are not well characterized. We aimed to identify and quantify the differentially abundant membrane proteins by comparing the membrane proteins of virulent and avirulent variants of E. histolytica HM-1:IMSS, and to investigate the potential associations among the differentially abundant membrane proteins. We performed quantitative proteomics analysis using isobaric tags for relative and absolute quantitation labeling, in combination with two mass spectrometry instruments, that is, nano-liquid chromatography (nanoLC)-matrix-assisted laser desorption/ionization-mass spectrometry/mass spectrometry and nanoLC-electrospray ionization tandem mass spectrometry. Overall, 37 membrane proteins were found to be differentially abundant, whereby 19 and 18 membrane proteins of the virulent variant of E. histolytica increased and decreased in abundance, respectively. Proteins that were differentially abundant include Rho family GTPase, calreticulin, a 70-kDa heat shock protein, and hypothetical proteins. Analysis by Protein ANalysis THrough Evolutionary Relationships database revealed that the differentially abundant membrane proteins were mainly involved in catalytic activities (29.7%) and metabolic processes (32.4%). Differentially abundant membrane proteins that were found to be involved mainly in the catalytic activities and the metabolic processes were highlighted together with their putative roles in relation to the virulence. Further investigations should be performed to elucidate the roles of these proteins in E. histolytica pathogenesis.
    Matched MeSH terms: Entamoeba histolytica/pathogenicity*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links