Displaying publications 1 - 20 of 39 in total

Abstract:
Sort:
  1. Jesudason CG
    PLoS One, 2016;11(1):e0145026.
    PMID: 26760507 DOI: 10.1371/journal.pone.0145026
    The Carnot cycle and its deduction of maximum conversion efficiency of heat inputted and outputted isothermally at different temperatures necessitated the construction of isothermal and adiabatic pathways within the cycle that were mechanically "reversible", leading eventually to the Kelvin-Clausius development of the entropy function S with differential dS = dq/T such that [symbol: see text]C dS = 0 where the heat absorption occurs at the isothermal paths of the elementary Carnot cycle. Another required condition is that the heat transfer processes take place infinitely slowly and "reversibly", implying that rates of transfer are not explicitly featured in the theory. The definition of 'heat' as that form of energy that is transferred as a result of a temperature difference suggests that the local mode of transfer of "heat" in the isothermal segments of the pathway implies a Fourier-like heat conduction mechanism which is apparently irreversible, leading to an increase in entropy of the combined reservoirs at either end of the conducting material, and which is deemed reversible mechanically. These paradoxes are circumvented here by first clarifying the terms used before modeling heat transfer as a thermodynamically reversible but mechanically irreversible process and applied to a one dimensional atomic lattice chain of interacting particles subjected to a temperature difference exemplifying Fourier heat conduction. The basis of a "recoverable trajectory" i.e. that which follows a zero entropy trajectory is identified. The Second Law is strictly maintained in this development. A corollary to this zero entropy trajectory is the generalization of the Zeroth law for steady state non-equilibrium systems with varying temperature, and thus to a statement about "equilibrium" in steady state non-thermostatic conditions. An energy transfer rate term is explicitly identified for each particle and agrees quantitatively (and independently) with the rate of heat absorbed at the reservoirs held at different temperatures and located at the two ends of the lattice chain in MD simulations, where all energy terms in the simulation refer to a single particle interacting with its neighbors. These results validate the theoretical model and provides the necessary boundary conditions (for instance with regard to temperature differentials and force fields) that thermodynamical variables must comply with to satisfy the conditions for a recoverable trajectory, and thus determines the solution of the differential and integral equations that are used to model these processes. These developments and results, if fully pursued would imply that not only can the Carnot cycle be viewed as describing a local process of energy-work conversion by a single interacting particle which feature rates of energy transfer and conversion not possible in the classical Carnot development, but that even irreversible local processes might be brought within the scope of this cycle, implying a unified treatment of thermodynamically (i) irreversible (ii) reversible (iii) isothermal and (iv) adiabatic processes by conflating the classically distinct concept of work and heat energy into a single particle interactional process. A resolution to the fundamental and long-standing conjecture of Benofy and Quay concerning the Fourier principle is one consequence of the analysis.
    Matched MeSH terms: Energy Transfer*
  2. Ali F, Khan I, Samiulhaq, Shafie S
    PLoS One, 2013;8(6):e65223.
    PMID: 23840321 DOI: 10.1371/journal.pone.0065223
    The aim of this study is to present an exact analysis of combined effects of radiation and chemical reaction on the magnetohydrodynamic (MHD) free convection flow of an electrically conducting incompressible viscous fluid over an inclined plate embedded in a porous medium. The impulsively started plate with variable temperature and mass diffusion is considered. The dimensionless momentum equation coupled with the energy and mass diffusion equations are analytically solved using the Laplace transform method. Expressions for velocity, temperature and concentration fields are obtained. They satisfy all imposed initial and boundary conditions and can be reduced, as special cases, to some known solutions from the literature. Expressions for skin friction, Nusselt number and Sherwood number are also obtained. Finally, the effects of pertinent parameters on velocity, temperature and concentration profiles are graphically displayed whereas the variations in skin friction, Nusselt number and Sherwood number are shown through tables.
    Matched MeSH terms: Energy Transfer*
  3. Khyasudeen MF, Nowakowski PJ, Tan HS
    J Phys Chem B, 2019 02 14;123(6):1359-1364.
    PMID: 30657672 DOI: 10.1021/acs.jpcb.9b00099
    We use two-dimensional electronic spectroscopy to measure the ultrafast correlation dynamics between the Q x and Q y transitions in chlorophyll molecules. We derive a variation to the center line slope method to quantify the frequency fluctuation cross-correlation function, C xy( Tw). Compared with the frequency fluctuation correlation function of the Q y transition, we observe that there is only a minimal correlation between the Q x and Q y transition, even at the ultrashort timescale of ∼100 fs, which then decays to zero in a time scale of ∼2 ps.
    Matched MeSH terms: Energy Transfer
  4. Tay BA
    Phys Rev E, 2021 Apr;103(4-1):042124.
    PMID: 34005972 DOI: 10.1103/PhysRevE.103.042124
    We consider the reduced dynamics of a molecular chain weakly coupled to a phonon bath. With a small and constant inhomogeneity in the coupling, the excitation relaxation rates are obtained in closed form. They are dominated by transitions between exciton modes lying next to each other in the energy spectrum. The rates are quadratic in the number of sites in a long chain. Consequently, the evolution of site occupation numbers exhibits longer coherence lifetime for short chains only. When external source and sink are added, the rate equations of exciton occupation numbers are similar to those obtained earlier by Fröhlich to explain energy storage and energy transfer in biological systems. There is a clear separation of timescale into a faster one pertaining to internal influence of the chain and phonon bath, and a slower one determined by external influence, such as the pumping rate of the source, the absorption rate of the sink, and the rate of radiation loss. The energy transfer efficiency at steady state depends strongly on these external parameters and is robust against a change in the internal parameters, such as temperature and inhomogeneity. Excitations are predicted to concentrate to the lowest energy mode when the source power is sufficiently high. In the site basis, this implies that when sustained by a high power source, a sink positioned at the center of the chain is more efficient in trapping energy than a sink placed at its end. Analytic expressions of energy transfer efficiency are obtained in the high power and low-power source limit. Parameters of a photosynthetic system are used as examples to illustrate the results.
    Matched MeSH terms: Energy Transfer
  5. Harun, S.W., Tamjis, M.R., Muhd-Yassin, S.Z., Abd-Rahman, M.K., Ahmad, H.
    ASM Science Journal, 2007;1(2):129-133.
    MyJurnal
    This paper demonstrates an erbium/ytterbium co-doped fi bre amplifi er (EYDFA) which used a pumping wavelength of 1058 nm, whereby the amplifi cation was assisted by the energy transfer between Yb and Er ions. The energy transfer increased the erbium doping concentration limit that was imposed by concentration quenching in erbium-doped fi bre. The optimum length was obtained at 4m~6m for erbium/ytterbium co-doped fi bre with Er ion concentration of 1000 p.p.m. This enabled the development of a compact amplifi er with a shorter gain medium compared to erbium-doped fi bre amplifi ers which use a gain medium of up to 15 m. A 1058 nm pumping wave-length was used for the EYDFA, as 1480 nm pumping resulted in severely degraded gain and noise fi gures because the energy transfer could not be achieved. The use of the optical isolator improved the small signal gain and noise fi gure by about 4.8 dB and 1.6 dB, respectively. Without the isolator, gain saturation and a noise fi gure penalty were observed due to the oscillating laser which was created at around 1534 nm by spurious refl ection. This showed that the usage of optical isolators was an important aspect to consider when designing an EYDFA.
    Matched MeSH terms: Energy Transfer
  6. Elgar CE, Yusoh NA, Tiley PR, Kolozsvári N, Bennett LG, Gamble A, et al.
    J Am Chem Soc, 2023 Jan 18;145(2):1236-1246.
    PMID: 36607895 DOI: 10.1021/jacs.2c11111
    Ruthenium(II) polypyridyl complexes (RPCs) that emit from metal-to-ligand charge transfer (MLCT) states have been developed as DNA probes and are being examined as potential anticancer agents. Here, we report that MLCT-emissive RPCs that bind DNA undergo Förster resonance energy transfer (FRET) with Cy5.5-labeled DNA, forming mega-Stokes shift FRET pairs. Based on this discovery, we developed a simple and rapid FRET binding assay to examine DNA-binding interactions of RPCs with diverse photophysical properties, including non-"light switch" complexes [Ru(dppz)2(5,5'dmb)]2+ and [Ru(PIP)2(5,5'dmb)]2+ (dppz = dipyridophenazine, 5,5'dmb = 5,5'-dimethyl-2,2'-bipyridine, PIP = 2-phenyl-imidazo[4,5-f][1,10]phenanthroline). Binding affinities toward duplex, G-quadruplex, three-way junction, and mismatch DNA were determined, and derived FRET donor-acceptor proximities provide information on potential binding sites. Molecules characterized by this method demonstrate encouraging anticancer properties, including synergy with the PARP inhibitor Olaparib, and mechanistic studies indicate that [Ru(PIP)2(5,5'dmb)]2+ acts to block DNA replication fork progression.
    Matched MeSH terms: Fluorescence Resonance Energy Transfer
  7. Goodarzi M, Safaei MR, Oztop HF, Karimipour A, Sadeghinezhad E, Dahari M, et al.
    ScientificWorldJournal, 2014;2014:761745.
    PMID: 24778601 DOI: 10.1155/2014/761745
    The effect of radiation on laminar and turbulent mixed convection heat transfer of a semitransparent medium in a square enclosure was studied numerically using the Finite Volume Method. A structured mesh and the SIMPLE algorithm were utilized to model the governing equations. Turbulence and radiation were modeled with the RNG k-ε model and Discrete Ordinates (DO) model, respectively. For Richardson numbers ranging from 0.1 to 10, simulations were performed for Rayleigh numbers in laminar flow (10⁴) and turbulent flow (10⁸). The model predictions were validated against previous numerical studies and good agreement was observed. The simulated results indicate that for laminar and turbulent motion states, computing the radiation heat transfer significantly enhanced the Nusselt number (Nu) as well as the heat transfer coefficient. Higher Richardson numbers did not noticeably affect the average Nusselt number and corresponding heat transfer rate. Besides, as expected, the heat transfer rate for the turbulent flow regime surpassed that in the laminar regime. The simulations additionally demonstrated that for a constant Richardson number, computing the radiation heat transfer majorly affected the heat transfer structure in the enclosure; however, its impact on the fluid flow structure was negligible.
    Matched MeSH terms: Energy Transfer/radiation effects
  8. Yousif AA, Bin Bahari I, Yasir MS
    Curr Radiopharm, 2012 Jan;5(1):34-7.
    PMID: 21864247
    Inactivation constant for V79 cells has been extracted from radiobiology experiments that utilize charged particles to irradiate mammal cells in vitro. Physical parameters such as effective charge, radiation mean free path and linear ionization which characterized protons and heluim-4 particles are determined using of standard values. The relationship between inactivation constant α and physical quality parameters have been determined, in this research, for protons and heluim-4 particles. This approach allows getting the characteristic biological response of inactivation of V79 cells in terms of each selected physical quality parameter. The best regression models are formulated for each obtained relationship.
    Matched MeSH terms: Linear Energy Transfer*
  9. An J, Nam J, Kim B, Lee HS, Kim BH, Chang IS
    Bioresour Technol, 2015 Aug;190:175-81.
    PMID: 25941759 DOI: 10.1016/j.biortech.2015.04.071
    The effect of two different anode-embedding orientations, lengthwise- and widthwise-embedded anodes was explored, on the performance of sediment microbial fuel cells (SMFCs) using a chessboard anode. The maximum current densities and power densities in SMFCs having lengthwise-embedded anodes (SLA1-SLA10) varied from 38.2mA/m(2) to 121mA/m(2) and from 5.5mW/m(2) to 20mW/m(2). In comparison, the maximum current densities and maximum power densities in SMFCs having anodes widthwise-embedded between 0cm to 8cm (SWA2-SWA5) increased from 82mA/m(2) to 140mA/m(2) and from 14.7mW/m(2) to 31.1mW/m(2) as the anode depth became deeper. Although there was a difference in the performance among SWA5-SWA10, it was considered negligible. Hence, it is concluded that it is important to embed anodes widthwise at the specific anode depths, in order to improve of SMFC performance. Chessboard anode used in this work could be a good option for the determination of optimal anode depths.
    Matched MeSH terms: Energy Transfer*
  10. Chiari L, Duque HV, Jones DB, Thorn PA, Pettifer Z, da Silva GB, et al.
    J Chem Phys, 2014 Jul 14;141(2):024301.
    PMID: 25028013 DOI: 10.1063/1.4885856
    We report on measurements of differential cross sections (DCSs) for electron impact excitation of a series of Rydberg electronic-states in α-tetrahydrofurfuryl alcohol (THFA). The energy range of these experiments was 20-50 eV, while the scattered electron was detected in the 10°-90° angular range. There are currently no other experimental data or theoretical computations against which we can directly compare the present measured results. Nonetheless, we are able to compare our THFA DCSs with earlier cross section measurements for Rydberg-state electronic excitation for tetrahydrofuran, a similar cyclic ether, from Do et al. [J. Chem. Phys. 134, 144302 (2011)]. In addition, "rotationally averaged" elastic DCSs, calculated using our independent atom model with screened additivity rule correction approach are also reported. Those latter results give integral cross sections consistent with the optical theorem, and supercede those from the only previous study of Milosavljević et al. [Eur. Phys. J. D 40, 107 (2006)].
    Matched MeSH terms: Energy Transfer
  11. Eteng AA, Abdul Rahim SK, Leow CY, Chew BW, Vandenbosch GA
    PLoS One, 2016;11(2):e0148808.
    PMID: 26890878 DOI: 10.1371/journal.pone.0148808
    Q-factor constraints are usually imposed on conductor loops employed as proximity range High Frequency Radio Frequency Identification (HF-RFID) reader antennas to ensure adequate data bandwidth. However, pairing such low Q-factor loops in inductive energy transmission links restricts the link transmission performance. The contribution of this paper is to assess the improvement that is reached with a two-stage design method, concerning the transmission performance of a planar square loop relative to an initial design, without compromise to a Q-factor constraint. The first stage of the synthesis flow is analytical in approach, and determines the number and spacing of turns by which coupling between similar paired square loops can be enhanced with low deviation from the Q-factor limit presented by an initial design. The second stage applies full-wave electromagnetic simulations to determine more appropriate turn spacing and widths to match the Q-factor constraint, and achieve improved coupling relative to the initial design. Evaluating the design method in a test scenario yielded a more than 5% increase in link transmission efficiency, as well as an improvement in the link fractional bandwidth by more than 3%, without violating the loop Q-factor limit. These transmission performance enhancements are indicative of a potential for modifying proximity HF-RFID reader antennas for efficient inductive energy transfer and data telemetry links.
    Matched MeSH terms: Energy Transfer
  12. Al-Asbahi BA, Hj Jumali MH, AlSalhi MS, Qaid SMH, Fatehmulla A, Mujamammi WM, et al.
    Polymers (Basel), 2021 Feb 18;13(4).
    PMID: 33670613 DOI: 10.3390/polym13040611
    The influence of SiO2/TiO2 nanocomposites (STNCs) content on non-radiative energy transfer (Förster-type) from poly (9,9'-dioctylfluorene-2,7-diyl) (PFO) to poly [2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) using steady-state and time-resolved photoluminescence spectroscopies was investigated at room temperature. The improved energy transfer from PFO to MEH-PPV upon an increment of the STNCs was achieved by examining absorbance, emission (PL) and photoluminescence excitation (PLE) spectra. The shorter values of the quantum yield (φDA) and lifetime (τDA) of the PFO in the hybrid thin films compared with the pure PFO, indicating efficient energy transfer from PFO to MEH-PPV with the increment of STNCs in the hybrid. The energy transfer parameters can be tuned by increment of the STNCs in the hybrid of PFO/MEH-PPV. The Stern-Volmer value (kSV), quenching rate value (kq), Förster radius (R0), distance between the molecules of PFO and MEH-PPV (RDA), energy transfer lifetime (τET), energy transfer rate (kET), total decay rate of the donor (TDR), critical concentration (Ao), and conjugation length (Aπ) were calculated. The gradually increasing donor lifetime and decreasing acceptor lifetime, upon increasing the STNCs content, prove the increase in conjugation length and meanwhile enhance in the energy transfer.
    Matched MeSH terms: Energy Transfer
  13. Woon KL, Yi CL, Pan KC, Etherington MK, Wu CC, Wong KT, et al.
    J Phys Chem C Nanomater Interfaces, 2019 May 16;123(19):12400-12410.
    PMID: 32952765 DOI: 10.1021/acs.jpcc.9b01900
    Understanding the excited-state dynamics and conformational relaxation in thermally activated delayed fluorescence (TADF) molecules, including conformations that potentially support intramolecular through-space charge transfer, can open new avenues for TADF molecular design as well as elucidate complex photophysical pathways in structurally complex molecules. Emissive molecules comprising a donor (triphenylamine, TPA) and an acceptor (triphenyltriazine, TRZ) bridged by a second donor (9,9-dimethyl-9-10-dihydroacridin, DMAC, or phenoxazine, PXZ) are synthesized and characterized. In solution, the flexibility of the sp3-hybridized carbon atom in DMAC of DMAC-TPA-TRZ, compared to the rigid PXZ, allows significant conformational reorganization, giving rise to multiple charge-transfer excited states. As a result of such a reorganization, the TRZ and TPA moieties become cofacially aligned, driven by a strong dipole-dipole attraction between the TPA and TRZ units, forming a weakly charge-transfer dimer state, in stark contrast to the case of PXZ-TPA-TRZ where the rigid PXZ bridge only supports a single PXZ-TRZ charge transfer (CT) state. The low-energy TPA-TRZ dimer is found to have a high-energy dimer local triplet state, which quenches delayed emission because the resultant singlet CT local triplet energy gap is too large to mediate efficient reverse intersystem crossing. However, organic light-emitting diodes using PXZ-TPA-TRZ as an emitting dopant resulted in external quantum efficiency as high as 22%, more than two times higher than that of DMAC-TPA-TRZ-based device, showing the impact that such intramolecular reorganization and donor-acceptor dimerization have on TADF performance.
    Matched MeSH terms: Energy Transfer
  14. Shojaei TR, Mohd Salleh MA, Tabatabaei M, Ekrami A, Motallebi R, Rahmani-Cherati T, et al.
    Braz J Infect Dis, 2014 Nov-Dec;18(6):600-8.
    PMID: 25181404 DOI: 10.1016/j.bjid.2014.05.015
    Mycobacterium tuberculosis, the causing agent of tuberculosis, comes second only after HIV on the list of infectious agents slaughtering many worldwide. Due to the limitations behind the conventional detection methods, it is therefore critical to develop new sensitive sensing systems capable of quick detection of the infectious agent. In the present study, the surface modified cadmium-telluride quantum dots and gold nanoparticles conjunct with two specific oligonucleotides against early secretory antigenic target 6 were used to develop a sandwich-form fluorescence resonance energy transfer-based biosensor to detect M. tuberculosis complex and differentiate M. tuberculosis and M. bovis Bacille Calmette-Guerin simultaneously. The sensitivity and specificity of the newly developed biosensor were 94.2% and 86.6%, respectively, while the sensitivity and specificity of polymerase chain reaction and nested polymerase chain reaction were considerably lower, 74.2%, 73.3% and 82.8%, 80%, respectively. The detection limits of the sandwich-form fluorescence resonance energy transfer-based biosensor were far lower (10 fg) than those of the polymerase chain reaction and nested polymerase chain reaction (100 fg). Although the cost of the developed nanobiosensor was slightly higher than those of the polymerase chain reaction-based techniques, its unique advantages in terms of turnaround time, higher sensitivity and specificity, as well as a 10-fold lower detection limit would clearly recommend this test as a more appropriate and cost-effective tool for large scale operations.
    Matched MeSH terms: Fluorescence Resonance Energy Transfer/instrumentation; Fluorescence Resonance Energy Transfer/methods
  15. Aaiza G, Khan I, Shafie S
    Nanoscale Res Lett, 2015 Dec;10(1):490.
    PMID: 26698873 DOI: 10.1186/s11671-015-1144-4
    Energy transfer in mixed convection unsteady magnetohydrodynamic (MHD) flow of an incompressible nanofluid inside a channel filled with saturated porous medium is investigated. The channel with non-uniform walls temperature is taken in a vertical direction under the influence of a transverse magnetic field. Based on the physical boundary conditions, three different flow situations are discussed. The problem is modelled in terms of partial differential equations with physical boundary conditions. Four different shapes of nanoparticles of equal volume fraction are used in conventional base fluids, ethylene glycol (EG) (C 2 H 6 O 2 ) and water (H 2 O). Solutions for velocity and temperature are obtained discussed graphically in various plots. It is found that viscosity and thermal conductivity are the most prominent parameters responsible for different results of velocity and temperature. Due to higher viscosity and thermal conductivity, C 2 H 6 O 2 is regarded as better convectional base fluid compared to H 2 O.
    Matched MeSH terms: Energy Transfer
  16. Obeng EM, Dullah EC, Razak NSA, Danquah MK, Budiman C, Ongkudon CM
    J Biol Methods, 2017;4(2):e71.
    PMID: 31453229 DOI: 10.14440/jbm.2017.172
    Endotoxin has been one of the topical chemical contaminants of major concern to researchers, especially in the field of bioprocessing. This major concern of researchers stems from the fact that the presence of Gram-negative bacterial endotoxin in intracellular products is unavoidable and requires complex downstream purification steps. For instance, endotoxin interacts with recombinant proteins, peptides, antibodies and aptamers and these interactions have formed the foundation for most biosensors for endotoxin detection. It has become imperative for researchers to engineer reliable means/techniques to detect, separate and remove endotoxin, without compromising the quality and quantity of the end-product. However, the underlying mechanism involved during endotoxin-biomolecule interaction is still a gray area. The use of quantitative molecular microscopy that provides high resolution of biomolecules is highly promising, hence, may lead to the development of improved endotoxin detection strategies in biomolecule preparation. Förster resonance energy transfer (FRET) spectroscopy is one of the emerging most powerful tools compatible with most super-resolution techniques for the analysis of molecular interactions. However, the scope of FRET has not been well-exploited in the analysis of endotoxin-biomolecule interaction. This article reviews endotoxin, its pathophysiological consequences and the interaction with biomolecules. Herein, we outline the common potential ways of using FRET to extend the current understanding of endotoxin-biomolecule interaction with the inference that a detailed understanding of the interaction is a prerequisite for the design of strategies for endotoxin identification and removal from protein milieus.
    Matched MeSH terms: Fluorescence Resonance Energy Transfer
  17. Shakinah Salleh, Affrida Abu Hassan, Shuhaimi Shamsudin, Yahya Awang, Ab. Kahar Sandrang, Abdullah, Thohirah Lee
    MyJurnal
    Chrysanthemum morfolium is an important temperate cut flower and potted plant for Malaysian local market and exporter. Considering chrysanthemum as a popular vegetatively propagated ornamental plant, induce mutations for breeding purposes are more beneficial. Several of physical mutagens have been used in mutation breeding including x-rays, gamma rays and ion beams. Gamma rays and ion beams are from two different linear energy transfer (LET) which are low and high, respectively. The objective of this study was to compare the effectiveness of acute gamma and ion beam irradiation in generating flower colour mutations on nodal explants of Chrysanthemum morifblium cv. Reagan Red'. The nodal explants were irradiated with acute gamma (0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110 and 120 Gy) and ion beam (0, 0.5, 1.0, 2.0, 3.0, 5.0, 8.0, 10, 15, 20 and 30 Gy). The optimal dose for in vitro shoot regeneration using acute gamma was in the range of 10 to .15.0Gy and for ion beam was between 3.5 to 4.OGv. Relative biological effectiveness for ion beam was found 3.75 higher than the acute gamma. The regenerated plantlets were planted in the greenhouse at MARDI, Cameron Highland for morphological screening. The highest frequency of flower colour mutation for acute gamma was 77.8% whilst for ion beam were between 42.3 to 58.3%.
    Matched MeSH terms: Linear Energy Transfer
  18. Khan I, Ali Shah N, Tassaddiq A, Mustapha N, Kechil SA
    PLoS One, 2018;13(1):e0188656.
    PMID: 29304161 DOI: 10.1371/journal.pone.0188656
    This paper studies the heat transfer analysis caused due to free convection in a vertically oscillating cylinder. Exact solutions are determined by applying the Laplace and finite Hankel transforms. Expressions for temperature distribution and velocity field corresponding to cosine and sine oscillations are obtained. The solutions that have been obtained for velocity are presented in the forms of transient and post-transient solutions. Moreover, these solutions satisfy both the governing differential equation and all imposed initial and boundary conditions. Numerical computations and graphical illustrations are used in order to study the effects of Prandtl and Grashof numbers on velocity and temperature for various times. The transient solutions for both cosine and sine oscillations are also computed in tables. It is found that, the transient solutions are of considerable interest up to the times t = 15 for cosine oscillations and t = 1.75 for sine oscillations. After these moments, the transient solutions can be neglected and, the fluid moves according with the post-transient solutions.
    Matched MeSH terms: Energy Transfer
  19. Zheng J, Wai JL, Lake RJ, New SY, He Z, Lu Y
    Anal Chem, 2021 Aug 10;93(31):10834-10840.
    PMID: 34310132 DOI: 10.1021/acs.analchem.1c01077
    DNAzymes have emerged as an important class of sensors for a wide variety of metal ions, with florescence DNAzyme sensors as the most widely used in different sensing and imaging applications because of their fast response time, high signal intensity, and high sensitivity. However, the requirements of an external excitation light source and its associated power increase the cost and size of the fluorometer, making it difficult to be used for portable detections. To overcome these limitations, we report herein a DNAzyme sensor that relies on chemiluminescence resonance energy transfer (CRET) without the need for external light. The sensor is constructed by combining the functional motifs from both Pb2+-dependent 8-17 DNAzyme conjugated to fluorescein (FAM) and hemin/G-quadruplex that mimics horseradish peroxidase to catalyze the oxidation of luminol by H2O2 to yield chemiluminescence. In the absence of Pb2+, the hybridization between the enzyme and substrate strands bring the FAM and hemin/G-quadruplex in close proximity, resulting in CRET. The presence of Pb2+ ions can drive the cleavage on the substrate strand, resulting in a sharp decrease in the melting temperature of hybridization and thus separation of the FAM from hemin/G-quadruplex. The liberated CRET pair causes a ratiometric increase in the donor's fluorescent signal and a decrease in the acceptor signal. Using this method, Pb2+ ions have been measured rapidly (<15 min) with a low limit of detection at 5 nM. By removing the requirement of exogenous light excitation, we have demonstrated a simple and portable detection using a smartphone, making the DNAzyme-CRET system suitable for field tests of lake water. Since DNAzymes selective for other metal ions or targets, such as bacteria, can be obtained using in vitro selection, the method reported here opens a new avenue for rapid, portable, and ratiometric detection of many targets in environmental monitoring, food safety, and medical diagnostics.
    Matched MeSH terms: Energy Transfer
  20. Mutashar S, Hannan MA, Samad SA, Hussain A
    Sensors (Basel), 2014;14(7):11522-41.
    PMID: 24984057 DOI: 10.3390/s140711522
    The use of wireless communication using inductive links to transfer data and power to implantable microsystems to stimulate and monitor nerves and muscles is increasing. This paper deals with the development of the theoretical analysis and optimization of an inductive link based on coupling and on spiral circular coil geometry. The coil dimensions offer 22 mm of mutual distance in air. However, at 6 mm of distance, the coils offer a power transmission efficiency of 80% in the optimum case and 73% in the worst case via low input impedance, whereas, transmission efficiency is 45% and 32%, respectively, via high input impedance. The simulations were performed in air and with two types of simulated human biological tissues such as dry and wet-skin using a depth of 6 mm. The performance results expound that the combined magnitude of the electric field components surrounding the external coil is approximately 98% of that in air, and for an internal coil, it is approximately 50%, respectively. It can be seen that the gain surrounding coils is almost constant and confirms the omnidirectional pattern associated with such loop antennas which reduces the effect of non-alignment between the two coils. The results also show that the specific absorption rate (SAR) and power loss within the tissue are lower than that of the standard level. Thus, the tissue will not be damaged anymore.
    Matched MeSH terms: Energy Transfer*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links