Displaying all 16 publications

Abstract:
Sort:
  1. Ahmad T, Ismail A, Ahmad SA, Khalil KA, Leo TK, Awad EA, et al.
    Molecules, 2018 Mar 22;23(4).
    PMID: 29565325 DOI: 10.3390/molecules23040730
    Actinidin was used to pretreat the bovine hide and ultrasonic wave (53 kHz and 500 W) was used for the time durations of 2, 4 and 6 h at 60 °C to extract gelatin samples (UA2, UA4 and UA6, respectively). Control (UAC) gelatin was extracted using ultrasound for 6 h at 60 °C without enzyme pretreatment. There was significant (p < 0.05) increase in gelatin yield as the time duration of ultrasound treatment increased with UA6 giving the highest yield of 19.65%. Gel strength and viscosity of UAC and UA6 extracted gelatin samples were 627.53 and 502.16 g and 16.33 and 15.60 mPa.s, respectively. Longer duration of ultrasound treatment increased amino acids content of the extracted gelatin and UAC exhibited the highest content of amino acids. Progressive degradation of polypeptide chains was observed in the protein pattern of the extracted gelatin as the time duration of ultrasound extraction increased. Fourier transform infrared (FTIR) spectroscopy depicted loss of molecular order and degradation in UA6. Scanning electron microscopy (SEM) revealed protein aggregation and network formation in the gelatin samples with increasing time of ultrasound treatment. The study indicated that ultrasound assisted gelatin extraction using actinidin exhibited high yield with good quality gelatin.
    Matched MeSH terms: Cysteine Endopeptidases/chemistry*
  2. Othman R, Wahab HA, Yusof R, Rahman NA
    In Silico Biol. (Gedrukt), 2007;7(2):215-24.
    PMID: 17688447
    Multiple sequence alignment was performed against eight proteases from the Flaviviridae family using ClustalW to illustrate conserved domains. Two sets of prediction approaches were applied and the results compared. Firstly, secondary structure prediction was performed using available structure prediction servers. The second approach made use of the information on the secondary structures extracted from structure prediction servers, threading techniques and DSSP database of some of the templates used in the threading techniques. Consensus on the one-dimensional secondary structure of Den2 protease was obtained from each approach and evaluated against data from the recently crystallised Den2 NS2B/NS3 obtained from the Protein Data Bank (PDB). Results indicated the second approach to show higher accuracy compared to the use of prediction servers only. Thus, it is plausible that this approach is applicable to the initial stage of structural studies of proteins with low amino acid sequence homology against other available proteins in the PDB.
    Matched MeSH terms: Endopeptidases/chemistry; Serine Endopeptidases/chemistry
  3. Fukumoto J, Ismail NI, Kubo M, Kinoshita K, Inoue M, Yuasa K, et al.
    J. Biochem., 2013 Nov;154(5):465-73.
    PMID: 23946505 DOI: 10.1093/jb/mvt077
    Oligopeptidase B (OPB) is a member of the prolyl oligopeptidase (POP) family of serine proteases. OPB in trypanosomes is an important virulence factor and potential pharmaceutical target. Characteristic structural features of POP family members include lack of a propeptide and presence of a β-propeller domain (PD), although the role of the β-PD has yet to be fully understood. In this work, residues Glu(172), Glu(490), Glu(524) and Arg(689) in Trypanosoma brucei OPB (Tb OPB), which are predicted to form inter-domain salt bridges, were substituted for Gln and Ala, respectively. These mutants were evaluated in terms of catalytic properties and stability. A negative effect on kcat/Km was obtained following mutation of Glu(172) or Arg(689). In contrast, the E490Q mutant exhibited markedly decreased thermal stability, although this mutation had less effect on catalytic properties compared to the E172Q and R689A mutants. Trypsin digestion showed that the boundary regions between the β-PD and catalytic domains (CDs) of the E490Q mutant are unfolded with heat treatment. These results indicated that Glu(490) in the CD plays a role in stabilization of Tb OPB, whereas Glu(172) in the β-PD is critical for the catalytic activity of Tb OPB.
    Matched MeSH terms: Serine Endopeptidases/chemistry*
  4. Frimayanti N, Chee CF, Zain SM, Rahman NA
    Int J Mol Sci, 2011;12(2):1089-100.
    PMID: 21541045 DOI: 10.3390/ijms12021089
    Dengue is a serious disease which has become a global health burden in the last decade. Currently, there are no approved vaccines or antiviral therapies to combat the disease. The increasing spread and severity of the dengue virus infection emphasizes the importance of drug discovery strategies that could efficiently and cost-effectively identify antiviral drug leads for development into potent drugs. To this effect, several computational approaches were applied in this work. Initially molecular docking studies of reference ligands to the DEN2 NS2B/NS3 serine protease were carried out. These reference ligands consist of reported competitive inhibitors extracted from Boesenbergia rotunda (i.e., 4-hydroxypanduratin A and panduratin A) and three other synthesized panduratin A derivative compounds (i.e., 246DA, 2446DA and 20H46DA). The design of new lead inhibitors was carried out in two stages. In the first stage, the enzyme complexed to the reference ligands was minimized and their complexation energies (i.e., sum of interaction energy and binding energy) were computed. New compounds as potential dengue inhibitors were then designed by putting various substituents successively on the benzyl ring A of the reference molecule. These substituted benzyl compounds were then computed for their enzyme-ligand complexation energies. New enzyme-ligand complexes, exhibiting the lowest complexation energies and closest to the computed energy for the reference compounds, were then chosen for the next stage manipulation and design, which involved substituting positions 4 and 5 of the benzyl ring A (positions 3 and 4 for 2446DA) with various substituents.
    Matched MeSH terms: Serine Endopeptidases/chemistry*
  5. Sim TS, Loke P, Lee MA, Singh M, Flotow H
    Parasitol Res, 2001 Sep;87(9):683-6.
    PMID: 11570549
    In this study, the genome of the Plasmodium falciparum Gombak A strain was examined for the presence of a gene encoding falcipain-2, a cysteine protease, using homology-based polymerase chain reaction cloning. The nucleotide sequence obtained from the gene cloned (designated pFG1) is approximately 99% homologous to other falcipain-2 genes from different strains. Comparatively, it is 69% homologous to falcipain-3 genes. Direct cloning of the falcipain-2 gene and its resemblance to the reported corresponding mRNA transcript suggests the absence of introns in this gene. Sequence alignment and comparison revealed four amino acid differences at positions 15, 51, 59 and 414 in the falcipain-2 from P. falciparum Gombak A as compared to other falcipain-2 proteins from different strains.
    Matched MeSH terms: Cysteine Endopeptidases/chemistry
  6. Fung SY, Tan NH
    Indian J Exp Biol, 2013 Dec;51(12):1063-9.
    PMID: 24579371
    The major hemorrhagin from C. purpureomaculatus (mangrove pit viper) venom was purified to homogeneity and termed Maculatoxin. Maculatoxin has a molecular weight of 38 kDa as determined by SDS-PAGE. It is an acidic protein (pI= 4.2) and exhibited proteolytic and hemorrhagic activities (MHD10 = 0.84 microg in mice) but was not lethal to mice at a dose of 1 microg/g. The hemorrhagic activity of Maculatoxin was completely inactivated by EDTA and partially inhibited by ATP and citrate. The N-terminal sequence of Maculatoxin (TPEQQRFPPTYIDLGIFVDHGMYAT) shares a significant degree of homology with the metalloprotease domain of other venom hemorrhagins. Indirect ELISA showed anti-Maculatoxin cross reacted with protein components of many snake venoms. In the double-sandwich ELISA, however, anti-Maculatoxin cross-reacted only with venoms of certain species of the Trimeresurus (Asia lance-head viper) complex, and the results support the recent proposed taxonomy changes concerning the Trimeresurus complex.
    Matched MeSH terms: Endopeptidases/chemistry
  7. Chan SW, Nathan S
    FEMS Immunol. Med. Microbiol., 2005 Jan 1;43(1):37-44.
    PMID: 15607634
    Filamentous phage random peptide libraries were used to identify the epitopes of Burkholderia pseudomallei protease by panning against IgG polyclonal sera that exhibited protease neutralizing properties. The isolated fusion peptides presented a consensus peptide sequence, TKSMALSG, which closely resembles part of the active site sequence, 435GTSMATPHVAG445, of B. pseudomallei serine metalloprotease. By comparing the consensus sequence, TKSMALSG, with the predicted three-dimensional molecular model of B. pseudomallei serine metalloprotease, it appears that the potential antibody binding epitope was buried within the molecule. This active site was conformational whereby one continuous sub-region (SMA) was located between two discontinuous sub-regions, supplied by the flanking residues in the same polypeptide. All phages selected from the biopanning with IgG polyclonal sera showed good binding towards the polyclonal antibodies when compared to the negative control. In addition, these peptide-bearing phages showed competitive inhibition of B. pseudomallei serine metalloprotease binding to the polyclonal IgG.
    Matched MeSH terms: Serine Endopeptidases/chemistry
  8. Mirsafian H, Mat Ripen A, Merican AF, Bin Mohamad S
    ScientificWorldJournal, 2014;2014:482463.
    PMID: 25254246 DOI: 10.1155/2014/482463
    Beta-amyloid precursor protein cleavage enzyme 1 (BACE1) and beta-amyloid precursor protein cleavage enzyme 2 (BACE2), members of aspartyl protease family, are close homologues and have high similarity in their protein crystal structures. However, their enzymatic properties differ leading to disparate clinical consequences. In order to identify the residues that are responsible for such differences, we used evolutionary trace (ET) method to compare the amino acid conservation patterns of BACE1 and BACE2 in several mammalian species. We found that, in BACE1 and BACE2 structures, most of the ligand binding sites are conserved which indicate their enzymatic property of aspartyl protease family members. The other conserved residues are more or less randomly localized in other parts of the structures. Four group-specific residues were identified at the ligand binding site of BACE1 and BACE2. We postulated that these residues would be essential for selectivity of BACE1 and BACE2 biological functions and could be sites of interest for the design of selective inhibitors targeting either BACE1 or BACE2.
    Matched MeSH terms: Aspartic Acid Endopeptidases/chemistry
  9. Gertsik N, Chau DM, Li YM
    ACS Chem. Biol., 2015 Aug 21;10(8):1925-31.
    PMID: 26030233 DOI: 10.1021/acschembio.5b00321
    γ-Secretase inhibitors (GSIs) and modulators (GSMs) are at the frontline of cancer and Alzheimer's disease research, respectively. While both are therapeutically promising, not much is known about their interactions with proteins other than γ-secretase. Signal peptide peptidase (SPP), like γ-secretase, is a multispan transmembrane aspartyl protease that catalyzes regulated intramembrane proteolysis. We used active site-directed photophore walking probes to study the effects of different GSIs and GSMs on the active sites of γ-secretase and SPP and found that nontransition state GSIs inhibit labeling of γ-secretase by activity-based probes but enhance labeling of SPP. The opposite is true of GSMs, which have little effect on the labeling of γ-secretase but diminish labeling of SPP. These results demonstrate that GSIs and GSMs are altering the structure of not only γ-secretase but also SPP, leading to potential changes in enzyme activity and specificity that may impact the clinical outcomes of these molecules.
    Matched MeSH terms: Aspartic Acid Endopeptidases/chemistry*
  10. Rahman RN, Mahamad S, Salleh AB, Basri M
    J Ind Microbiol Biotechnol, 2007 Jul;34(7):509-17.
    PMID: 17492323
    Five out of the nine benzene-toulene-ethylbenzene-xylene (BTEX) tolerant bacteria that demonstrated high protease activity on skim milk agar were isolated. Among them, isolate 115b identified as Bacillus pumilus exhibited the highest protease production. The protease produced was stable in 25% (v/v) benzene and toluene and it was activated 1.7 and 2.5- fold by n-dodecane and n-tetradecane, respectively. The gene encoding the organic solvent tolerant protease was cloned and its nucleotide sequence determined. Sequence analysis revealed an open reading frame (ORF) of 1,149 bp that encoded a polypeptide of 383 amino acid residues. The polypeptide composed of 29 residues of signal peptide, a propeptide of 79 residues and a mature protein of 275 amino acids with a calculated molecular mass of 27,846 Da. This is the only report available to date on organic solvent tolerant protease from B. pumilus.
    Matched MeSH terms: Endopeptidases/chemistry
  11. Yotmanee P, Rungrotmongkol T, Wichapong K, Choi SB, Wahab HA, Kungwan N, et al.
    J Mol Graph Model, 2015 Jul;60:24-33.
    PMID: 26086900 DOI: 10.1016/j.jmgm.2015.05.008
    The pathogenic dengue virus (DV) is a growing global threat, particularly in South East Asia, for which there is no specific treatment available. The virus possesses a two-component (NS2B/NS3) serine protease that cleaves the viral precursor proteins. Here, we performed molecular dynamics simulations of the NS2B/NS3 protease complexes with six peptide substrates (capsid, intNS3, 2A/2B, 4B/5, 3/4A and 2B/3 containing the proteolytic site between P(1) and P(1)' subsites) of DV type 2 to compare the specificity of the protein-substrate binding recognition. Although all substrates were in the active conformation for cleavage reaction by NS2B/NS3 protease, their binding strength was somewhat different. The simulated results of intermolecular hydrogen bonds and decomposition energies suggested that among the ten substrate residues (P(5)-P(5)') the P(1) and P(2) subsites play a major role in the binding with the focused protease. The arginine residue at these two subsites was found to be specific preferential binding at the active site with a stabilization energy of intNS3>2A/2B>4B/5>3/4A>2B/3 in a relative correspondence with previous experimentally derived values.
    Matched MeSH terms: Serine Endopeptidases/chemistry
  12. Tan NH, Ponnudurai G
    Toxicon, 1994 Oct;32(10):1265-9.
    PMID: 7846697
    Indirect ELISA shows that the antibodies to Calloselasma rhodostoma venom hemorrhagin (CR-HMG), thrombin-like enzyme (CR-TLE) and L-amino acid oxidase (CR-LAAO) exhibited strong to moderate cross-reactions with most crotalid and viperid venoms, but only anti-CR-LAAO cross-reacted with the elapid venoms. However, the indirect ELISA failed to detect some antigenic similarities demonstrable by cross-neutralization study. The double-sandwich ELISA for the three anti-C. rhodostoma venom components exhibited a much lower level of cross-reactions than the indirect ELISA.
    Matched MeSH terms: Endopeptidases/chemistry
  13. Chong Teoh T, J Al-Harbi S, Abdulrahman AY, Rothan HA
    Molecules, 2021 Jul 16;26(14).
    PMID: 34299596 DOI: 10.3390/molecules26144321
    Zika virus (ZIKV) represents a re-emerging threat to global health due to its association with congenital birth defects. ZIKV NS2B-NS3 protease is crucial for virus replication by cleaving viral polyprotein at various junctions to release viral proteins and cause cytotoxic effects in ZIKV-infected cells. This study characterized the inhibitory effects of doxycycline against ZIKV NS2B-NS3 protease and viral replication in human skin cells. The in silico data showed that doxycycline binds to the active site of ZIKV protease at a low docking energy (-7.8 Kcal/mol) via four hydrogen bonds with the protease residues TYR1130, SER1135, GLY1151, and ASP83. Doxycycline efficiently inhibited viral NS2B-NS3 protease at average human temperature (37 °C) and human temperature with a high fever during virus infection (40 °C). Interestingly, doxycycline showed a higher inhibitory effect at 40 °C (IC50 = 5.3 µM) compared to 37 °C (9.9 µM). The virus replication was considerably reduced by increasing the concentration of doxycycline. An approximately 50% reduction in virus replication was observed at 20 µM of doxycycline. Treatment with 20 µM of doxycycline reduced the cytopathic effects (CPE), and the 40 µM of doxycycline almost eliminated the CPE of human skin cells. This study showed that doxycycline binds to the ZIKV protease and inhibits its catalytic activity at a low micro-molecular concentration range. Treatment of human skin fibroblast with doxycycline eliminated ZIKV infection and protected the cells against the cytopathic effects of the infection.
    Matched MeSH terms: Serine Endopeptidases/chemistry
  14. Hanafi MA, Hashim SN, Chay SY, Ebrahimpour A, Zarei M, Muhammad K, et al.
    Food Res Int, 2018 04;106:589-597.
    PMID: 29579964 DOI: 10.1016/j.foodres.2018.01.030
    As a protein-rich, underutilized crop, green soybean could be exploited to produce hydrolysates containing angiotensin-I converting enzyme (ACE) inhibitory peptides. Defatted green soybean was hydrolyzed using four different food-grade proteases (Alcalase, Papain, Flavourzyme and Bromelain) and their ACE inhibitory activities were evaluated. The Alcalase-generated green soybean hydrolysate showed the highest ACE inhibitory activity (IC50: 0.14 mg/mL at 6 h hydrolysis time) followed by Papain (IC50: 0.20 mg/mL at 5 h hydrolysis time), Bromelain (IC50: 0.36 mg/mL at 6 h hydrolysis time) and Flavourzyme (IC50: 1.14 mg/mL at 6 h hydrolysis time) hydrolysates. The Alcalase-generated hydrolysate was profiled based on its hydrophobicity and isoelectric point using reversed phase high performance liquid chromatography (RP-HPLC) and isoelectric point focusing (IEF) fractionators. The Alcalase-generated green soybean hydrolysate comprising of peptides EAQRLLF, PSLRSYLAE, PDRSIHGRQLAE, FITAFR and RGQVLS, revealed the highest ACE inhibitory activity of 94.19%, 99.31%, 92.92%, 101.51% and 90.40%, respectively, while their IC50 values were 878 μM, 532 μM, 1552 μM, 1342 μM and 993 μM, respectively. It can be concluded that Alcalase-digested green soybean hydrolysates could be exploited as a source of peptides to be incorporated into functional foods with antihypertensive activity.
    Matched MeSH terms: Endopeptidases/chemistry
  15. Tan NH
    PMID: 19770070 DOI: 10.1016/j.cbpc.2009.09.002
    A thrombin-like enzyme, purpurase, was purified from the Cryptelytrops purpureomaculatus (mangrove pit viper) venom using high performance ion-exchange and gel filtration chromatography. The purified sample (termed purpurase) yielded a homogeneous band in SDS-polyacrylamide gel electrophoresis with a molecular weight of 35,000. The N-terminal sequence of purpurase was determined to be VVGGDECNINDHRSLVRIF and is homologous to many other venom thrombin-like enzymes. Purpurase exhibits both arginine ester hydrolase and amidase activities. Kinetic studies using tripeptide chromogenic anilide substrates showed that purpurase is not fastidious towards its substrate. The clotting times of fibrinogen by purpurase were concentration dependent, with optimum clotting activity at 3mg fibronogen/mL. The clotting activity by purpurase was in the following decreasing order: cat fibrinogen>human fibrinogen>dog fibrinogen>goat fibrinogen>rabbit fibrinogen. Reversed-phase HPLC analysis of the products of action of purpurase on bovine fibrinogen showed that only fibrinopeptide A was released. Indirect ELISA studies showed that anti-purpurase cross-reacted strongly with venoms of most crotalid venoms, indicating the snake venom thrombin-like enzymes generally possess similar epitopes. In the more specific double-sandwich ELISA, however, anti-purpurase cross-reacted only with venoms of certain species of the Trimeresurus complex, and the results support the recent proposed taxonomy changes concerning the Trimeresurus complex.
    Matched MeSH terms: Endopeptidases/chemistry
  16. Tan CW, Sam IC, Chong WL, Lee VS, Chan YF
    Antiviral Res, 2017 07;143:186-194.
    PMID: 28457855 DOI: 10.1016/j.antiviral.2017.04.017
    Zika virus (ZIKV) is an arthropod-borne flavivirus that causes newborn microcephaly and Guillian-Barré syndrome in adults. No therapeutics are available to treat ZIKV infection or other flaviviruses. In this study, we explored the inhibitory effect of glycosaminoglycans and analogues against ZIKV infection. Highly sulfated heparin, dextran sulfate and suramin significantly inhibited ZIKV infection in Vero cells. De-sulfated heparin analogues lose inhibitory effect, implying that sulfonate groups are critical for viral inhibition. Suramin, an FDA-approved anti-parasitic drug, inhibits ZIKV infection with 3-5 log10 PFU viral reduction with IC50value of ∼2.5-5 μg/ml (1.93 μM-3.85 μM). A time-of-drug-addition study revealed that suramin remains potent even when administrated at 1-24 hpi. Suramin inhibits ZIKV infection by preventing viral adsorption, entry and replication. Molecular dynamics simulation revealed stronger interaction of suramin with ZIKV NS3 helicase than with the envelope protein. Suramin warrants further investigation as a potential antiviral candidate for ZIKV infection. Heparan sulfate (HS) is a cellular attachment receptor for multiple flaviviruses. However, no direct ZIKV-heparin interaction was observed in heparin-binding analysis, and downregulate or removal of cellular HS with sodium chlorate or heparinase I/III did not inhibit ZIKV infection. This indicates that cell surface HS is not utilized by ZIKV as an attachment receptor.
    Matched MeSH terms: Serine Endopeptidases/chemistry
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links