AIMS AND OBJECTIVES: Accordingly, the aim of this study was designed to evaluate the prevalence of accessory heads of biceps brachii muscle in human cadavers.
MATERIALS AND METHODS: This study was conducted on 107 formalin embalmed human cadavers (male 62 and 45 female), and dissections were performed in accordance with the institutional ethical standards and the Indian Anatomy Act.
RESULTS: Out of 107 cadavers, three-headed biceps brachii was noted in 18 cadavers (16.82%) associated with the unusual course of musculocutaneous nerve. Rare and unusual unilateral five-headed biceps brachii was noted in one male cadaver (0.93%). All accessory heads noted in this study were supplied by the separate branches of musculocutaneous nerve except the humeral head of five-headed biceps, which was supplied by the radial nerve.
CONCLUSION: Awareness of these anatomical variations, knowledge is necessary for radiologists, anesthetists, physiotherapists, and orthopedic surgeons to avoid complications during various radiodiagnostic procedures or surgeries of flexor deformities of the upper arm and forearm.
MATERIAL/METHODS: Fifty female mice, aged 4-6 weeks, were used in this study. Animals were superovulated, cohabitated overnight, and sacrificed. Fallopian tubes were excised and flushed. Embryos at the 2-cell stage were collected and cultured to obtain 4- and 8-cell stages before being cryopreserved using vitrification and slow freezing. Fixed embryos were stained with fluorescence-labelled antibodies against actin and tubulin, as well as DAPI for staining the nucleus. Labelled embryos were scanned using CLSM and images were analyzed with Q-Win software V3.
RESULTS: The fluorescence intensity of both vitrified and slow-frozen embryos was significantly lower for tubulin, actin, and nucleus as compared to non-cryopreserved embryos (p<0.001). Intensities of tubulin, actin, and nucleus in each stage were also decreased in vitrified and slow-frozen groups as compared to non-cryopreserved embryos.
CONCLUSIONS: Cryopreservation of mouse embryos by slow freezing had a more detrimental effect on the actin, tubulin, and nucleus structure of the embryos compared to vitrification. Vitrification is therefore superior to slow freezing in terms of embryonic cryotolerance.