Displaying all 4 publications

Abstract:
Sort:
  1. Tan FHP, Azzam G, Najimudin N, Shamsuddin S, Zainuddin A
    Mol Neurobiol, 2023 Aug;60(8):4716-4730.
    PMID: 37145377 DOI: 10.1007/s12035-023-03368-x
    Alzheimer's disease (AD) is the most common neurological ailment worldwide. Its process comprises the unique aggregation of extracellular senile plaques composed of amyloid-beta (Aβ) in the brain. Aβ42 is the most neurotoxic and aggressive of the Aβ42 isomers released in the brain. Despite much research on AD, the complete pathophysiology of this disease remains unknown. Technical and ethical constraints place limits on experiments utilizing human subjects. Thus, animal models were used to replicate human diseases. The Drosophila melanogaster is an excellent model for studying both physiological and behavioural aspects of human neurodegenerative illnesses. Here, the negative effects of Aβ42-expression on a Drosophila AD model were investigated through three behavioural assays followed by RNA-seq. The RNA-seq data was verified using qPCR. AD Drosophila expressing human Aβ42 exhibited degenerated eye structures, shortened lifespan, and declined mobility function compared to the wild-type Control. RNA-seq revealed 1496 genes that were differentially expressed from the Aβ42-expressing samples against the control. Among the pathways that were identified from the differentially expressed genes include carbon metabolism, oxidative phosphorylation, antimicrobial peptides, and longevity-regulating pathways. While AD is a complicated neurological condition whose aetiology is influenced by a number of factors, it is hoped that the current data will be sufficient to give a general picture of how Aβ42 influences the disease pathology. The discovery of molecular connections from the current Drosophila AD model offers fresh perspectives on the usage of this Drosophila which could aid in the discovery of new anti-AD medications.
    Matched MeSH terms: Drosophila melanogaster/metabolism
  2. Vignesvaran K, Alias Z
    Arch Insect Biochem Physiol, 2016 Jul;92(3):210-21.
    PMID: 27075600 DOI: 10.1002/arch.21332
    Drosophila melanogaster glutathione S-transferase D3 (DmGSTD3) has a shorter amino acid sequence as compared to other GSTs known in the fruit flies. This is due to the 15 amino acid N-terminal truncation in which normally active amino acid residue is located. The work has made use of homology modeling to visualize the arrangement of amino acid side chains in the glutathione (GSH) substrate cavity. The identified amino acids were then replaced with amino acids without functional groups in the side chains and the mutants were analyzed kinetically. Homology modeling revealed that the side chains of Y89 and Y97 were shown facing toward the substrate cavity proposing their possible role in catalyzing the conjugation. Y97A and Y89A GSH gave large changes in Km (twofold increase), Vmax (fivefold reduction), and Kcat /Km values for GSH suggesting their significant role in the conjugation reaction. The replacement at either positions has not affected the affinity of the enzyme toward 1-chloro-2,4-dinitrobenzene as no significant change in values of Kmax was observed. The replacement, however, had significantly reduced the catalytic efficiency of both mutants with (Kcat /Km )(GSH) and (Kcat /Km )(CDNB) of eight- and twofold reduction. The recombinant DmGSTD3 has shown no activity toward 1,2-dichloro-4-nitrobenzene, 2,4-hexadienal, 2,4-heptadienal, p-nitrobenzyl chloride, ethacrynic acid, and sulfobromophthalein. Therefore, it was evident that DmGSTD3 has made use of distal amino acids Y97 and Y89 for GSH conjugation.
    Matched MeSH terms: Drosophila melanogaster/metabolism
  3. Choo SW, Beh CY, Russell S, White R
    ScientificWorldJournal, 2014;2014:191535.
    PMID: 25389534 DOI: 10.1155/2014/191535
    In Drosophila, protein trap strategies provide powerful approaches for the generation of tagged proteins expressed under endogenous control. Here, we describe expression and functional analysis to evaluate new Ubx and hth protein trap lines generated by the Cambridge Protein Trap project. Both protein traps exhibit spatial and temporal expression patterns consistent with the reported endogenous pattern in the embryo. In imaginal discs, Ubx-YFP is expressed throughout the haltere and 3rd leg imaginal discs, while Hth-YFP is expressed in the proximal regions of haltere and wing discs but not in the pouch region. The Ubx (CPTI000601) line is semilethal as a homozygote. No T3/A1 to T2 transformations were observed in the embryonic cuticle or the developing midgut. The homozygous survivors, however, exhibit a weak haltere phenotype with a few wing-like marginal bristles on the haltere capitellum. Although hth (CPTI000378) is completely lethal as a homozygote, the hth (CPTI000378) /hth (C1) genotype is viable. Using a hth deletion (Df(3R)BSC479) we show that hth (CPTI000378) /Df(3R)BSC479 adults are phenotypically normal. No transformations were observed in hth (CPTI000378), hth (CPTI000378) /hth (C1), or hth (CPTI000378) /Df(3R)BSC479 embryonic cuticles. We have successfully characterised the Ubx-YFP and Hth-YFP protein trap lines demonstrating that the tagged proteins show appropriate expression patterns and produce at least partially functional proteins.
    Matched MeSH terms: Drosophila melanogaster/metabolism
  4. Wong KC, Sankaran S, Jayapalan JJ, Subramanian P, Abdul-Rahman PS
    Arch Insect Biochem Physiol, 2021 May;107(1):e21785.
    PMID: 33818826 DOI: 10.1002/arch.21785
    Mutant lethal giant larvae (lgl) flies (Drosophila melanogaster) are known to develop epithelial tumors with invasive characteristics. The present study has been conducted to investigate the influence of melatonin (0.025 mM) on behavioral responses of lgl mutant flies as well as on biochemical indices (redox homeostasis, carbohydrate and lipid metabolism, transaminases, and minerals) in hemolymph, and head and intestinal tissues. Behavioral abnormalities were quantitatively observed in lgl flies but were found normalized among melatonin-treated lgl flies. Significantly decreased levels of lipid peroxidation products and antioxidants involved in redox homeostasis were observed in hemolymph and tissues of lgl flies, but had restored close to normalcy in melatonin-treated flies. Carbohydrates including glucose, trehalose, and glycogen were decreased and increased in the hemolymph and tissues of lgl and melatonin-treated lgl flies, respectively. Key enzymes of carbohydrate metabolism showed a significant increment in their levels in lgl mutants but had restored close to wild-type baseline levels in melatonin-treated flies. Variables of lipid metabolism showed significantly inverse levels in hemolymph and tissues of lgl flies, while normalization of most of these variables was observed in melatonin-treated mutants. Lipase, chitinase, transaminases, and alkaline phosphatase showed an increment in their activities and minerals exhibited decrement in lgl flies; reversal of changes was observed under melatonin treatment. The impairment of cognition, disturbance of redox homeostasis and metabolic reprogramming in lgl flies, and restoration of normalcy in all these cellular and behavioral processes indicate that melatonin could act as oncostatic and cytoprotective agents in Drosophila.
    Matched MeSH terms: Drosophila melanogaster/metabolism
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links