Displaying all 5 publications

Abstract:
Sort:
  1. Tan FHP, Azzam G, Najimudin N, Shamsuddin S, Zainuddin A
    Mol Neurobiol, 2023 Aug;60(8):4716-4730.
    PMID: 37145377 DOI: 10.1007/s12035-023-03368-x
    Alzheimer's disease (AD) is the most common neurological ailment worldwide. Its process comprises the unique aggregation of extracellular senile plaques composed of amyloid-beta (Aβ) in the brain. Aβ42 is the most neurotoxic and aggressive of the Aβ42 isomers released in the brain. Despite much research on AD, the complete pathophysiology of this disease remains unknown. Technical and ethical constraints place limits on experiments utilizing human subjects. Thus, animal models were used to replicate human diseases. The Drosophila melanogaster is an excellent model for studying both physiological and behavioural aspects of human neurodegenerative illnesses. Here, the negative effects of Aβ42-expression on a Drosophila AD model were investigated through three behavioural assays followed by RNA-seq. The RNA-seq data was verified using qPCR. AD Drosophila expressing human Aβ42 exhibited degenerated eye structures, shortened lifespan, and declined mobility function compared to the wild-type Control. RNA-seq revealed 1496 genes that were differentially expressed from the Aβ42-expressing samples against the control. Among the pathways that were identified from the differentially expressed genes include carbon metabolism, oxidative phosphorylation, antimicrobial peptides, and longevity-regulating pathways. While AD is a complicated neurological condition whose aetiology is influenced by a number of factors, it is hoped that the current data will be sufficient to give a general picture of how Aβ42 influences the disease pathology. The discovery of molecular connections from the current Drosophila AD model offers fresh perspectives on the usage of this Drosophila which could aid in the discovery of new anti-AD medications.
    Matched MeSH terms: Drosophila/metabolism
  2. Inaba T, Murate M, Tomishige N, Lee YF, Hullin-Matsuda F, Pollet B, et al.
    Sci Rep, 2019 04 09;9(1):5812.
    PMID: 30967612 DOI: 10.1038/s41598-019-42247-1
    Ceramide phosphoethanolamine (CPE), a major sphingolipid in invertebrates, is crucial for axonal ensheathment in Drosophila. Darkfield microscopy revealed that an equimolar mixture of bovine buttermilk CPE (milk CPE) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (diC18:1 PC) tends to form tubules and helical ribbons, while pure milk CPE mainly exhibits amorphous aggregates and, at low frequency, straight needles. Negative staining electron microscopy indicated that helices and tubules were composed of multilayered 5-10 nm thick slab-like structures. Using different molecular species of PC and CPE, we demonstrated that the acyl chain length of CPE but not of PC is crucial for the formation of tubules and helices in equimolar mixtures. Incubation of the lipid suspensions at the respective phase transition temperature of CPE facilitated the formation of both tubules and helices, suggesting a dynamic lipid rearrangement during formation. Substituting diC18:1 PC with diC18:1 PE or diC18:1 PS failed to form tubules and helices. As hydrated galactosylceramide (GalCer), a major lipid in mammalian myelin, has been reported to spontaneously form tubules and helices, it is believed that the ensheathment of axons in mammals and Drosophila is based on similar physical processes with different lipids.
    Matched MeSH terms: Drosophila/metabolism*
  3. Toegel M, Azzam G, Lee EY, Knapp DJHF, Tan Y, Fa M, et al.
    Nat Commun, 2017 11 21;8(1):1663.
    PMID: 29162808 DOI: 10.1038/s41467-017-01592-3
    Binary expression systems have revolutionised genetic research by enabling delivery of loss-of-function and gain-of-function transgenes with precise spatial-temporal resolution in vivo. However, at present, each existing platform relies on a defined exogenous transcription activator capable of binding a unique recognition sequence. Consequently, none of these technologies alone can be used to simultaneously target different tissues or cell types in the same organism. Here, we report a modular system based on programmable transcription activator-like effector (TALE) proteins, which enables parallel expression of multiple transgenes in spatially distinct tissues in vivo. Using endogenous enhancers coupled to TALE drivers, we demonstrate multiplexed orthogonal activation of several transgenes carrying cognate variable activating sequences (VAS) in distinct neighbouring cell types of the Drosophila central nervous system. Since the number of combinatorial TALE-VAS pairs is virtually unlimited, this platform provides an experimental framework for highly complex genetic manipulation studies in vivo.
    Matched MeSH terms: Drosophila/metabolism
  4. El-Sharnouby S, Fischer B, Magbanua JP, Umans B, Flower R, Choo SW, et al.
    PLoS One, 2017;12(3):e0172725.
    PMID: 28282436 DOI: 10.1371/journal.pone.0172725
    It is now well established that eukaryote genomes have a common architectural organization into topologically associated domains (TADs) and evidence is accumulating that this organization plays an important role in gene regulation. However, the mechanisms that partition the genome into TADs and the nature of domain boundaries are still poorly understood. We have investigated boundary regions in the Drosophila genome and find that they can be identified as domains of very low H3K27me3. The genome-wide H3K27me3 profile partitions into two states; very low H3K27me3 identifies Depleted (D) domains that contain housekeeping genes and their regulators such as the histone acetyltransferase-containing NSL complex, whereas domains containing moderate-to-high levels of H3K27me3 (Enriched or E domains) are associated with regulated genes, irrespective of whether they are active or inactive. The D domains correlate with the boundaries of TADs and are enriched in a subset of architectural proteins, particularly Chromator, BEAF-32, and Z4/Putzig. However, rather than being clustered at the borders of these domains, these proteins bind throughout the H3K27me3-depleted regions and are much more strongly associated with the transcription start sites of housekeeping genes than with the H3K27me3 domain boundaries. While we have not demonstrated causality, we suggest that the D domain chromatin state, characterised by very low or absent H3K27me3 and established by housekeeping gene regulators, acts to separate topological domains thereby setting up the domain architecture of the genome.
    Matched MeSH terms: Drosophila/metabolism
  5. Shao YM, Ma X, Paira P, Tan A, Herr DR, Lim KL, et al.
    PLoS One, 2018;13(1):e0188212.
    PMID: 29304113 DOI: 10.1371/journal.pone.0188212
    Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive loss of dopaminergic neurons in the substantia nigra of the human brain, leading to depletion of dopamine production. Dopamine replacement therapy remains the mainstay for attenuation of PD symptoms. Nonetheless, the potential benefit of current pharmacotherapies is mostly limited by adverse side effects, such as drug-induced dyskinesia, motor fluctuations and psychosis. Non-dopaminergic receptors, such as human A2A adenosine receptors, have emerged as important therapeutic targets in potentiating therapeutic effects and reducing the unwanted side effects. In this study, new chemical entities targeting both human A2A adenosine receptor and dopamine D2 receptor were designed and evaluated. Two computational methods, namely support vector machine (SVM) models and Tanimoto similarity-based clustering analysis, were integrated for the identification of compounds containing indole-piperazine-pyrimidine (IPP) scaffold. Subsequent synthesis and testing resulted in compounds 5 and 6, which acted as human A2A adenosine receptor binders in the radioligand competition assay (Ki = 8.7-11.2 μM) as well as human dopamine D2 receptor binders in the artificial cell membrane assay (EC50 = 22.5-40.2 μM). Moreover, compound 5 showed improvement in movement and mitigation of the loss of dopaminergic neurons in Drosophila models of PD. Furthermore, in vitro toxicity studies on compounds 5 and 6 did not reveal any mutagenicity (up to 100 μM), hepatotoxicity (up to 30 μM) or cardiotoxicity (up to 30 μM).
    Matched MeSH terms: Drosophila/metabolism
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links