Displaying all 13 publications

Abstract:
Sort:
  1. Khor SY, Jegathesan M
    Med J Malaysia, 1977 Sep;32(1):85-9.
    PMID: 609352
    Matched MeSH terms: Disinfectants/pharmacology*
  2. Tan SM, Lee SM, Dykes GA
    Foodborne Pathog Dis, 2015 Mar;12(3):183-9.
    PMID: 25562466 DOI: 10.1089/fpd.2014.1853
    Weak organic acids are widely used as preservatives and disinfectants in the food industry. Despite their widespread use, the antimicrobial mode of action of organic acids is still not fully understood. This study investigated the effect of acetic acid on the cell membranes and cellular energy generation of four Salmonella strains. Using a nucleic acid/protein assay, it was established that acetic acid did not cause leakage of intracellular components from the strains. A scanning electron microscopy study further confirmed that membrane disruption was not the antimicrobial mode of action of acetic acid. Some elongated Salmonella cells observed in the micrographs indicated a possibility that acetic acid may inhibit DNA synthesis in the bacterial cells. Using an ATP assay, it was found that at a neutral pH, acetic acid caused cellular energy depletion with an ADP/ATP ratio in the range between 0.48 and 2.63 (p<0.05) that was apparent for the four Salmonella strains. We suggest that this effect was probably due solely to the action of undissociated acid molecules. The antimicrobial effect of acetic acid was better under acidic conditions (ADP/ATP ratio of 5.56 ± 1.27; p<0.05), where the role of both pH and undissociated acid molecules can act together. We concluded that the inhibitory effect of acetic acid is not solely attributable to acidic pH but also to undissociated acid molecules. This finding has implication for the use of acetic acid as an antimicrobial against Salmonella on food products, such as chicken meat, which can buffer its pH.
    Matched MeSH terms: Disinfectants/pharmacology*
  3. Fernando WJ
    J Theor Biol, 2009 Jul 21;259(2):297-303.
    PMID: 19336237 DOI: 10.1016/j.jtbi.2009.03.026
    Chemical inactivation of microorganisms is a common process widely employed in many fields such as in treatment of water, preservation in food industry and antimicrobial treatments in healthcare. For economy of applications and efficiency of treatment establishment the minimum dosage of breakpoint in the chemical application becomes essential. Even though experimental investigations have been extensive, theoretical understanding of such processes are demanding. Commonly employed theoretical analyses for the inactivation of microorganisms and depletion of chemicals include kinetics expressing the rates of depletion of chemical and microorganisms. The terms chemical demand (x) and specific disinfectant demand (alpha) are often used in theoretical modeling of inactivation. The value of specific disinfectant demand (alpha) has always been assumed to be a constant in these models. Intracellular concentration built up within the cells of the microorganisms during inactivation could lead to possible weakening effects of microorganisms thereby requiring lower doses as disinfection proceeds makes the assumption of constant alpha inaccurate. Model equations are formulated based on these observations co-relating the parameters alpha and x with a progressive inactivation (N/N(0)). The chemical concentration (C) is also presented in terms of the inactivation time (t) and the survival ratio (N/N(0)) for given pH and temperature conditions. The model is examined using experimentally verified Ct data of Giardia Cysts/chlorine system. The respective values of x for different survival ratios were evaluated from the data using MatLab software. Proposed model correlating for the disinfectant demand (x) with the survival ratio (N/N(0)) fits satisfactorily with those evaluated from data. The rate constants for different pH and temperature conditions are evaluated which showed compatibility with the Arrhenius model. The dependence of frequency factors with pH indicated compatibility with accepted models. The Ct values regenerated with the kinetic data shows a very accurate fit with published data.
    Matched MeSH terms: Disinfectants/pharmacology*
  4. Yunus N, Rashid AA, Azmi LL, Abu-Hassan MI
    J Oral Rehabil, 2005 Jan;32(1):65-71.
    PMID: 15634304
    Nylon denture base material could be a useful alternative to poly (methyl methacrylate) (PMMA) in special circumstances such as patient allergy to the monomer. The aim of this study was to evaluate the flexural properties of a nylon denture base material (Lucitone FRS), a conventional compression-moulded heat-polymerized (Meliodent), a compression-moulded microwave-polymerized (Acron MC) and an injection-moulded microwave-polymerized (Lucitone 199) PMMA polymers. The effect of aldehyde-free, oxygen releasing disinfectant solution (Perform) on these properties was also investigated. The flexural modulus and the flexural strength were assessed with a three-point bending test. Specimens were stored in water at a temperature of 37 degrees C for 30 days. For each material, half of the prepared specimens were randomly selected and immersed in the disinfectant 24 h prior to testing. Results were compared statistically at a confidence level of 95%. The result showed that in both the control and disinfected groups, the flexural modulus of nylon was significantly lower than the three PMMA polymers. The flexural strength of nylon was significantly lower than those of Meliodent and Acron MC but was comparable with Lucitone 199. A 24-h immersion in the disinfecting solution increased the rigidity of nylon denture base material.
    Matched MeSH terms: Dental Disinfectants/pharmacology
  5. Rusmah M
    Singapore Dent J, 1993 Jun;18(1):17-21.
    PMID: 9582689
    The disinfective and fixative properties of glutaraldehyde are now widely investigated. Glutaraldehyde is effective against micro-organisms and their spores. Recently, studies have shown the effectiveness of glutaraldehyde against the HIV virus. 2% glutaraldehyde is now recommended for the sterilisation of surgical instruments, operating areas, dental impressions and root canals during endodontic therapy. Studies have also shown that glutaraldehyde is an effective fixative with minimum side effects, limited penetration and quick acting. Pulpotomy studies using glutaraldehyde as the fixative agent produce high success rates. The important feature is the vital pulpal tissue at the apical third suggesting its limited penetration. The small amounts that get distributed systemically are quickly metabolised and excreted in the urine or exhaled as carbon dioxide.
    Matched MeSH terms: Dental Disinfectants/pharmacology*
  6. Mohd Masri S, Nazni WA, Lee HL, T Rogayah TA, Subramaniam S
    Trop Biomed, 2005 Dec;22(2):185-9.
    PMID: 16883286 MyJurnal
    Three new techniques of sterilising maggots of Lucilia cuprina for the purpose of debriding intractable wounds were studied. These techniques were utilisation of ultra-violet C (UVC) and maggot sterilisation with disinfectants. The status of sterility was checked on nutrient agar and blood agar and confirmed with staining. The indicators for the effectiveness of the methods were sterility and survival rate of the eggs or larvae. Egg sterilisation with UVC had the lowest hatching rate (16+/-0.00%) while egg sterilisation with disinfectants showed high hatching rate (36.67+/-4.41%) but low maggot survival rate (31.67+/-1.67%). Sterilisation of the maggots was the most suitable, since the survival rate was the highest (88.67+/-0.88%). Complete sterility was achieved in all cases, except that Proteus mirabilis was consistently found. However, the presence of this microorganism was considered beneficial.
    Matched MeSH terms: Disinfectants/pharmacology
  7. Zulkifli I, Fauziah O, Omar AR, Shaipullizan S, Siti Selina AH
    Vet Res Commun, 1999 Mar;23(2):91-9.
    PMID: 10359153
    Two experiments were conducted to evaluate the effect of formaldehyde vaporization of a hatcher on the tracheal epithelium of chick embryos, and on the production performance and behaviour of commercial broiler chicks. In experiment 1, chick embryos were exposed to 23.5 ppm of formaldehyde vapour during the last 3 days of incubation. Tracheal samples were taken at 0, 6, 30 and 54 h after exposure to formaldehyde and examined by scanning electron microscopy for pathological changes. Observable lesions included excessive accumulation of mucus, matted cilia, loss of cilia and sloughing of the epithelium. The lesions were more severe in chicks exposed for 54 h as compared to those exposed for 6 or 30 h. In experiment 2, 60 chicks that had been exposed to formaldehyde vapour as above and 60 control chicks were used to investigate the effect of formaldehyde fumigation on production performance and behaviour. Formaldehyde vaporization resulted in higher weekly (days 0-6 and 21-27) and total (days 0-41) feed intake and poorer weekly (days 0-6, 7-13, 21-27 and 28-34) and overall (days 0-41) feed conversion ratios. Body weight, mortality and behaviour (eating, drinking, sitting and standing activities) were not affected by formaldehyde fumigation.
    Matched MeSH terms: Disinfectants/pharmacology*
  8. Harbarth S, Tuan Soh S, Horner C, Wilcox MH
    J Hosp Infect, 2014 Aug;87(4):194-202.
    PMID: 24996517 DOI: 10.1016/j.jhin.2014.04.012
    Given the breadth and depth of antiseptic use, it is surprising how few large-scale studies have been undertaken into the consequences of their use, particularly in clinical practice. Depending on your point of view, this may either reflect an assurance that reduced susceptibility to antiseptics, and notably whether this confers cross-resistance to systemically administered antimicrobial agents, is not an issue of concern, or relative ignorance about the potential threat.
    Matched MeSH terms: Disinfectants/pharmacology*
  9. Shirazinejad A, Ismail N, Bhat R
    Foodborne Pathog Dis, 2010 Dec;7(12):1531-6.
    PMID: 21034165 DOI: 10.1089/fpd.2010.0616
    Fresh raw shrimps were dipped for 10, 20, and 30 min at room temperature (25°C ± 1°C) in lactic acid (LA; 1.5%, 3.0%, v/v) to evaluate their antipathogenic effects against Vibrio cholerae, Vibrio parahaemolyticus, Salmonella entreitidis, and Escherichia coli O157:H7 inoculated at a level of 10(5) CFU/g. Significant reductions in the population of all these pathogenic bacteria were recorded after dipping treatments, which were correlated to the corresponding LA concentrations and treatment time. With respect to the microbial quality, 3.0% LA treatment for 10 min was acceptable in reducing the pathogenic bacteria. Additionally, sensory evaluation results revealed a 10-min dip in 3.0% LA to be more acceptable organoleptically compared with 20 and 30 min of treatments. Results of the present study are envisaged to be useful for commercial applications for effective decontamination of shrimp.
    Matched MeSH terms: Disinfectants/pharmacology*
  10. Fernando WJ, Othman R
    Math Biosci, 2006 Feb;199(2):175-87.
    PMID: 16387333
    Disinfectants are generally used to inactivate microorganisms in solutions. The process of inactivation involves the disinfectant in the liquid diffusing towards the bacteria sites and thereafter reacting with bacteria at rates determined by the respective reaction rates. Such processes have demonstrated an initial lag phase followed by an active depletion phase of bacteria. This paper attempts to study the importance of the combined effects of diffusion of the disinfectant through the outer membrane of the bacteria and transport through the associated concentration boundary layers (CBLs) during the initial lag phase. Mathematical equations are developed correlating the initial concentration of the disinfectant with time required for reaching a critical concentration (C*) at the inner side of the membrane of the cell based on diffusion of disinfectant through the outer membranes of the bacteria and the formation of concentration boundary layers on both sides of the membranes. Experimental data of the lag phases of inactivation already available in the literature for inactivation of Bacillus subtilis spores with ozone and monochloramine are tested with the equations. The results seem to be in good agreement with the theoretical equations indicating the importance of diffusion process across the outer cell membranes and the resulting CBL's during the lag phase of disinfection.
    Matched MeSH terms: Disinfectants/pharmacology*
  11. Sarjit A, Dykes GA
    Int J Food Microbiol, 2015 Jun 16;203:63-9.
    PMID: 25791251 DOI: 10.1016/j.ijfoodmicro.2015.02.026
    Little work has been reported on the use of commercial antimicrobials against foodborne pathogens on duck meat. We investigated the effectiveness of trisodium phosphate (TSP) and sodium hypochlorite (SH) as antimicrobial treatments against Campylobacter and Salmonella on duck meat under simulated commercial water chilling conditions. The results were compared to the same treatments on well-studied chicken meat. A six strain Campylobacter or Salmonella cocktail was inoculated (5 ml) at two dilution levels (10(4) and 10(8) cfu/ml) onto 25 g duck or chicken meat with skin and allowed to attach for 10 min. The meat was exposed to three concentrations of pH adjusted TSP (8, 10 and 12% (w/v), pH 11.5) or SH (40, 50 and 60 ppm, pH 5.5) in 30 ml water under simulated spin chiller conditions (4 °C, agitation) for 10 min. In a parallel experiment the meat was placed in the antimicrobial treatments before inoculation and bacterial cocktails were added to the meat after the antimicrobial solution was removed while all other parameters were maintained. Untreated controls and controls using water were included in all experiments. Bacterial numbers were determined on Campylobacter blood-free selective agar and Mueller Hinton agar or xylose deoxycholate agar and tryptone soya agar using the thin agar layer method for Campylobacter and Salmonella, respectively. All TSP concentrations significantly (p<0.05) reduced numbers of Campylobacter (~1.2-6.4 log cfu/cm(2)) and Salmonella (~0.4-6.6 log cfu/cm(2)) on both duck and chicken meat. On duck meat, numbers of Campylobacter were less than the limit of detection at higher concentrations of TSP and numbers of Salmonella were less than the limit of detection at all concentrations of TSP except one. On chicken meat, numbers of Campylobacter and Salmonella were less than the limit of detection only at the lower inoculum level and higher TSP concentrations. By contrast only some of the concentrations of SH significantly (p<0.05) reduced numbers of Campylobacter and Salmonella (~0.2-1.5 log cfu/cm(2)) on both duck and chicken meats. None of the SH treatments resulted in numbers of either pathogen being less than limit of detection. Results indicate that chicken meat has the ability to effectively protect Campylobacter and Salmonella against the impact of trisodium phosphate and sodium hypochlorite while duck meat does not. This study suggests that trisodium phosphate has a strong potential for application in a commercial poultry processing to reduce Campylobacter and Salmonella specifically on duck meat.
    Matched MeSH terms: Disinfectants/pharmacology
  12. Nor A'shimi MH, Alattraqchi AG, Mohd Rani F, A Rahman NI, Ismail S, Abdullah FH, et al.
    J Infect Dev Ctries, 2019 07 31;13(7):626-633.
    PMID: 32065820 DOI: 10.3855/jidc.11455
    INTRODUCTION: Acinetobacter baumannii is a Gram-negative nosocomial pathogen that has the capacity to develop resistance to all classes of antimicrobial compounds. However, very little is known regarding its susceptibility to biocides (antiseptics and disinfectants) and capacity to form biofilms, particularly for Malaysian isolates.

    AIM: To determine the susceptibility of A. baumannii isolates to commonly-used biocides, investigate their biofilm-forming capacities and the prevalence of biocide resistance and biofilm-associated genes.

    METHODOLOGY: . The minimum inhibitory concentration (MIC) values of 100 A. baumannii hospital isolates from Terengganu, Malaysia, towards the biocides benzalkonium chloride (BZK), benzethonium chloride (BZT) and chlorhexidine digluconate (CLX), were determined by broth microdilution. The isolates were also examined for their ability to form biofilms in 96-well microplates. The prevalence of biocide resistance genes qacA, qacE and qacDE1 and the biofilm-associated genes bap and abaI were determined by polymerase chain reaction (PCR).

    RESULTS: Majority of the A. baumannii isolates (43%) showed higher MIC values (> 50 µg/mL) for CLX than for BZK (5% for MIC > 50 µg/mL) and BZT (9% for MIC > 50 µg/mL). The qacDE1 gene was predominant (63%) followed by qacE (28%) whereas no isolate was found harbouring qacA. All isolates were positive for the bap and abaI genes although the biofilm-forming capacity varied among the isolates.

    CONCLUSION: The Terengganu A. baumannii isolates showed higher prevalence of qacDE1 compared to qacE although no correlation was found with the biocides' MIC values. No correlation was also observed between the isolates' biofilm-forming capacity and the MIC values for the biocides.

    Matched MeSH terms: Disinfectants/pharmacology*
  13. Daood U, Matinlinna JP, Pichika MR, Mak KK, Nagendrababu V, Fawzy AS
    Sci Rep, 2020 07 03;10(1):10970.
    PMID: 32620785 DOI: 10.1038/s41598-020-67616-z
    To study the antimicrobial effects of quaternary ammonium silane (QAS) exposure on Streptococcus mutans and Lactobacillus acidophilus bacterial biofilms at different concentrations. Streptococcus mutans and Lactobacillus acidophilus biofilms were cultured on dentine disks, and incubated for bacterial adhesion for 3-days. Disks were treated with disinfectant (experimental QAS or control) and returned to culture for four days. Small-molecule drug discovery-suite was used to analyze QAS/Sortase-A active site. Cleavage of a synthetic fluorescent peptide substrate, was used to analyze inhibition of Sortase-A. Raman spectroscopy was performed and biofilms stained for confocal laser scanning microscopy (CLSM). Dentine disks that contained treated dual-species biofilms were examined using scanning electron microscopy (SEM). Analysis of DAPI within biofilms was performed using CLSM. Fatty acids in bacterial membranes were assessed with succinic-dehydrogenase assay along with time-kill assay. Sortase-A protein underwent conformational change due to QAS molecule during simulation, showing fluctuating alpha and beta strands. Spectroscopy revealed low carbohydrate intensities in 1% and 2% QAS. SEM images demonstrated absence of bacterial colonies after treatment. DAPI staining decreased with 1% QAS (p 
    Matched MeSH terms: Disinfectants/pharmacology
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links