Displaying all 6 publications

Abstract:
Sort:
  1. Hadibarata T, Kristanti RA, Fulazzaky MA, Nugroho AE
    Biotechnol Appl Biochem, 2012 Nov-Dec;59(6):465-70.
    PMID: 23586956 DOI: 10.1002/bab.1048
    A white-rot fungus of Polyporus sp. S133 was isolated from an oil-polluted soil. The metabolism of pyrene by this fungus was investigated in liquid medium with 5 mg of the compound. Depletion of pyrene was evident during the 30-day growth period and was 21% and 90%, respectively, in cometabolism and metabolism of pyrene alone. Pyrene was absorbed to fungal cells or biodegraded to form simpler structural compounds. Seventy-one percent of eliminated pyrene was transformed by Polyporus sp. S133 into other compounds, whereas only 18% was absorbed in the fungal cell. The effects of pH and temperature on biomass production of Polyporus sp. S133 for pyrene were examined; the properties of laccase and 1,2-dioxygenase produced by Polyporus sp. S133 during pyrene degradation were investigated. The optimal values of pH were 3, 5, and 4 for laccase, 1,2-dioxygenase, and biomass production, respectively, whereas the optimal values of temperature were 25 °C for laccase and 50 °C for 1,2-dioxygenase and biomass production. Under optimal conditions, pyrene was mainly metabolized to 1-hydroxypyrene and gentisic acid. The structure of 1-hydroxypyrene and gentisic acid was determined by gas chromatography-mass spectrometry after identification using thin-layer chromatography.
    Matched MeSH terms: Dioxygenases/metabolism
  2. Hadibarata T, Tachibana S, Askari M
    J Microbiol Biotechnol, 2011 Mar;21(3):299-304.
    PMID: 21464602
    Phenanthrene degradation by Polyporus sp. S133, a new phenanthrene-degrading strain, was investigated in this work. The analysis of degradation was performed by calculation of the remaining phenanthrene by gas chromatography-mass spectrometry. When cells were grown in phenanthrene culture after 92 h, all but 200 and 250 mg/l of the phenanthrene had been degraded. New metabolic pathways of phenanthrene and a better understanding of the phenoloxidases and dioxygenase mechanism involved in degradation of phenanthrene were explored in this research. The mechanism of degradation was determined through identification of the several metabolites; 9,10-phenanthrenequinone, 2,2'-diphenic acid, salicylic acid, and catechol. 9,10-Oxidation and ring cleavage to give 9,10-phenanthrenequinone is the major fate of phenanthrene in ligninolytic Polyporus sp. S133. The identification of 2,2'-diphenic acid in culture extracts indicates that phenanthrene was initially attacked through dioxigenation at C9 and C10 to give cis-9,10-dihydrodiol. Dehydrogenation of phenanthrene-cis-9,10-dihydrodiol to produce the corresponding diol, followed by ortho-cleavage of the oxygenated ring, produced 2,2'-diphenic acid. Several enzymes (manganese peroxidase, lignin peroxidase, laccase, 1,2-dioxygenase, and 2,3-dioxygenase) produced by Polyporus sp. S133 was detected during the incubation. The highest level of activity was shown at 92 h of culture.
    Matched MeSH terms: Dioxygenases/metabolism*
  3. Abdul Aziz FA, Suzuki K, Honjo M, Amano K, Mohd Din ARJB, Tashiro Y, et al.
    J Biosci Bioeng, 2021 Jan;131(1):77-83.
    PMID: 33268319 DOI: 10.1016/j.jbiosc.2020.09.009
    The coexisting mechanism of a synthetic bacterial community (SBC) was investigated to better understand how to manage microbial communities. The SBC was constructed with three kinds of phenol-utilizing bacteria, Pseudomonas sp. LAB-08, Comamonas testosteroni R2, and Cupriavidus sp. P-10, under chemostat conditions supplied with phenol as a sole carbon and energy source. Population densities of all strains were monitored by real-time quantitative PCR (qPCR) targeting the gene encoding the large subunit of phenol hydroxylase. Although the supply of phenol was stopped to allow perturbation in the SBC, all of the strains coexisted and the degradation of phenol was maintained for more than 800 days. The qPCR analyses showed that strains LAB-08 and R2 became dominant simultaneously, whereas strain P-10 was a minor population. This phenomenon was observed before and after the phenol-supply stoppage. The kinetic parameters for phenol of the SBC changed before and after the phenol-supply stoppage, which suggests a change in functional roles of strains in the SBC. Transcriptional levels of phenol hydroxylase and catechol dioxygenases of three strains were monitored by reverse-transcription qPCR (RT-qPCR). The RT-qPCR analyses revealed that all strains shared phenol and survived independently before the phenol-supply stoppage. After the stoppage, strain P-10 would incur the cost for degradation of phenol and catechol, whereas strains LAB-08 and R2 seemed to be cheaters using metabolites, indicating the development of the metabolic network. These results indicated that it is important for the management and redesign of microbial communities to understand the metabolism of bacterial communities.
    Matched MeSH terms: Dioxygenases/metabolism
  4. Gan HM, Shahir S, Yahya A
    Microbiology (Reading), 2012 Aug;158(Pt 8):1933-1941.
    PMID: 22609751 DOI: 10.1099/mic.0.059550-0
    The gene coding for the oxygenase component, sadA, of 4-aminobenzenesulfonate (4-ABS) 3,4-dioxygenase in Hydrogenophaga sp. PBC was previously identified via transposon mutagenesis. Expression of wild-type sadA in trans restored the ability of the sadA mutant to grow on 4-ABS. The inclusion of sadB and sadD, coding for a putative glutamine-synthetase-like protein and a plant-type ferredoxin, respectively, further improved the efficiency of 4-ABS degradation. Transcription analysis using the gfp promoter probe plasmid showed that sadABD was expressed during growth on 4-ABS and 4-sulfocatechol. Heterologous expression of sadABD in Escherichia coli led to the biotransformation of 4-ABS to a metabolite which shared a similar retention time and UV/vis profile with 4-sulfocatechol. The putative reductase gene sadC was isolated via degenerate PCR and expression of sadC and sadABD in E. coli led to maximal 4-ABS biotransformation. In E. coli, the deletion of sadB completely eliminated dioxygenase activity while the deletion of sadC or sadD led to a decrease in dioxygenase activity. Phylogenetic analysis of SadB showed that it is closely related to the glutamine-synthetase-like proteins involved in the aniline degradation pathway. This is the first discovery, to our knowledge, of the functional genetic components for 4-ABS aromatic ring hydroxylation in the bacterial domain.
    Matched MeSH terms: Dioxygenases/metabolism
  5. Yeo CC, Tan CL, Gao X, Zhao B, Poh CL
    Res. Microbiol., 2007 Sep;158(7):608-16.
    PMID: 17720458
    Pseudomonas alcaligenes NCIMB 9867 (strain P25X) is known to synthesize two isofunctional gentisate 1,2-dioxygenases (GDO; EC 1.13.11.4) as well as other enzymes involved in the degradation of xylenols and cresols via the gentisate pathway. The hbzE gene encoding what is possibly the strictly inducible gentisate 1,2-dioxygenase II (GDO-II) was cloned, overexpressed and purified as a hexahistidine fusion protein from Escherichia coli. Active recombinant GDO-II had an estimated molecular mass of 150kDa and is likely a tetrameric protein with a subunit mass of approximately 40kDa, similar to the previously characterized gentisate 1,2-dioxygenase I (GDO-I) encoded by xlnE. However, GDO-II was unable to utilize gentisate that is substituted at the carbon-4 position, unlike GDO-I which had broader substrate specificity. GDO-II also possessed different kinetic characteristics when compared to GDO-I. The hbzE-encoded GDO-II shared higher sequence identities (53%) with GDOs from Ralstonia sp. U2 and Polaromonas naphthalenivorans CJ2, compared with only 35% identity with the xlnE-encoded GDO-I. The hbzE gene was found to be part of a cluster of nine genes including the putative regulatory gene designated hbzR, which encodes an LysR-type regulator and is divergently transcribed from the other genes of the hbzHIJKLFED cluster.
    Matched MeSH terms: Dioxygenases/metabolism*
  6. Atago Y, Shimodaira J, Araki N, Bin Othman N, Zakaria Z, Fukuda M, et al.
    Biosci Biotechnol Biochem, 2016 May;80(5):1012-9.
    PMID: 26828632 DOI: 10.1080/09168451.2015.1127134
    Rhodococcus jostii RHA1 (RHA1) degrades polychlorinated biphenyl (PCB) via co-metabolism with biphenyl. To identify the novel open reading frames (ORFs) that contribute to PCB/biphenyl metabolism in RHA1, we compared chromatin immunoprecipitation chip and transcriptomic data. Six novel ORFs involved in PCB/biphenyl metabolism were identified. Gene deletion mutants of these 6 ORFs were made and were tested for their ability to grow on biphenyl. Interestingly, only the ro10225 deletion mutant showed deficient growth on biphenyl. Analysis of Ro10225 protein function showed that growth of the ro10225 deletion mutant on biphenyl was recovered when exogenous recombinant Ro10225 protein was added to the culture medium. Although Ro10225 protein has no putative secretion signal sequence, partially degraded Ro10225 protein was detected in conditioned medium from wild-type RHA1 grown on biphenyl. This Ro10225 fragment appeared to form a complex with another PCB/biphenyl oxidation enzyme. These results indicated that Ro10225 protein is essential for the formation of the PCB/biphenyl dioxygenase complex in RHA1.
    Matched MeSH terms: Dioxygenases/metabolism
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links