Displaying all 11 publications

Abstract:
Sort:
  1. Aeinehvand MM, Ibrahim F, Harun SW, Al-Faqheri W, Thio TH, Kazemzadeh A, et al.
    Lab Chip, 2014 Mar 07;14(5):988-97.
    PMID: 24441792 DOI: 10.1039/c3lc51116b
    Centrifugal microfluidic platforms have emerged as point-of-care diagnostic tools. However, the unidirectional nature of the centrifugal force limits the available space for multi-step processes on a single microfluidic disc. To overcome this limitation, a passive pneumatic pumping method actuated at high rotational speeds has been previously proposed to pump liquid against the centrifugal force. In this paper, a novel micro-balloon pumping method that relies on elastic energy stored in a latex membrane is introduced. It operates at low rotational speeds and pumps a larger volume of liquid towards the centre of the disc. Two different micro-balloon pumping mechanisms have been designed to study the pump performance at a range of rotational frequencies from 0 to 1500 rpm. The behaviour of the micro-balloon pump on the centrifugal microfluidic platforms has been theoretically analysed and compared with the experimental data. The experimental data show that the developed pumping method dramatically decreases the required rotational speed to pump liquid compared to the previously developed pneumatic pumping methods. It also shows that within a range of rotational speed, a desirable volume of liquid can be stored and pumped by adjusting the size of the micro-balloon.
    Matched MeSH terms: Dimethylpolysiloxanes/chemistry
  2. Wan Ibrahim WA, Farhani H, Sanagi MM, Aboul-Enein HY
    J Chromatogr A, 2010 Jul 23;1217(30):4890-7.
    PMID: 20561627 DOI: 10.1016/j.chroma.2010.05.050
    A new sol-gel hybrid coating, polydimethylsiloxane-2-hydroxymethyl-18-crown-6 (PDMS-2OHMe18C6) was prepared in-house for use in solid phase microextraction (SPME). The three compositions produced were assessed for its extraction efficiency towards three selected organophosphorus pesticides (OPPs) based on peak area extracted obtained from gas chromatography with electron capture detection. All three compositions showed superior extraction efficiencies compared to commercial 100 microm PDMS fiber. The composition showing best extraction performance was used to obtain optimized SPME conditions: 75 degrees C extraction temperature, 10 min extraction time, 120 rpm stirring rate, desorption time 5 min, desorption temperature 250 degrees C and 1.5% (w/v) of NaCl salt addition. The method detection limits (S/N=3) of the OPPs with the new sol-gel hybrid material ranged from 4.5 to 4.8 ng g(-1), which is well below the maximum residue limit set by Codex Alimentarius Commission and European Commission. Percentage recovery of OPPs from strawberry, green apple and grape samples with the new hybrid sol-gel SPME material ranged from 65 to 125% with good precision of the method (%RSD) ranging from 0.3 to 7.4%.
    Matched MeSH terms: Dimethylpolysiloxanes/chemistry*
  3. Agatonovic-Kustrin S, Beresford R, Yusof AP
    J Pharm Biomed Anal, 2001 Sep;26(2):241-54.
    PMID: 11470201
    A quantitative structure-permeability relationship was developed using Artificial Neural Network (ANN) modeling to study penetration across a polydimethylsiloxane membrane. A set of 254 compounds and their experimentally derived maximum steady state flux values used in this study was gathered from the literature. A total of 42 molecular descriptors were calculated for each compound. A genetic algorithm was used to select important molecular descriptors and supervised ANN was used to correlate selected descriptors with the experimentally derived maximum steady-state flux through the polydimethylsiloxane membrane (log J). Calculated molecular descriptors were used as the ANN's inputs and log J as the output. Developed model indicates that molecular shape and size, inter-molecular interactions, hydrogen-bonding capacity of drugs, and conformational stability could be used to predict drug absorption through skin. A 12-descriptor nonlinear computational neural network model has been developed for the estimation of log J values for a data set of 254 drugs. Described model does not require experimental parameters and could potentially provide useful prediction of membrane penetration of new drugs and reduce the need for actual compound synthesis and flux measurements.
    Matched MeSH terms: Dimethylpolysiloxanes/chemistry*
  4. Lian Z, Chan Y, Luo Y, Yang X, Koh KS, Wang J, et al.
    Electrophoresis, 2020 06;41(10-11):891-901.
    PMID: 31998972 DOI: 10.1002/elps.201900403
    Scale-up in droplet microfluidics achieved by increasing the number of devices running in parallel or increasing the droplet makers in the same device can compromise the narrow droplet-size distribution, or requires high fabrication cost, when glass- or polymer-based microdevices are used. This paper reports a novel way using parallelization of needle-based microfluidic systems to form highly monodispersed droplets with enhanced production rates yet in cost-effective way, even when forming higher order emulsions with complex inner structure. Parallelization of multiple needle-based devices could be realized by applying commercially available two-way connecters and 3D-printed four-way connectors. The production rates of droplets could be enhanced around fourfold (over 660 droplets/min) to eightfold (over 1300 droplets/min) by two-way connecters and four-way connectors, respectively, for the production of the same kind of droplets than a single droplet maker (160 droplets/min). Additionally, parallelization of four-needle sets with each needle specification ranging from 34G to 20G allows for simultaneous generation of four groups of PDMS microdroplets with each group having distinct size yet high monodispersity (CV < 3%). Up to six cores can be encapsulated in double emulsion using two parallelly connected devices via tuning the capillary number of middle phase in a range of 1.31 × 10-4 to 4.64 × 10-4 . This study leads to enhanced production yields of droplets and enables the formation of groups of droplets simultaneously to meet extensive needs of biomedical and environmental applications, such as microcapsules with variable dosages for drug delivery or drug screening, or microcapsules with wide range of absorbent loadings for water treatment.
    Matched MeSH terms: Dimethylpolysiloxanes/chemistry
  5. Cheong HR, Nguyen NT, Khaw MK, Teoh BY, Chee PS
    Lab Chip, 2018 10 09;18(20):3207-3215.
    PMID: 30229248 DOI: 10.1039/c8lc00776d
    This paper reports a wirelessly powered ionic polymer-metal composite (IPMC) soft actuator operated by external radio frequency (RF) magnetic fields for targeted drug delivery. A 183 μm thick IPMC cantilever valve was fitted with an embedded LC resonant circuit to wirelessly control the actuator when the field frequency is tuned to its resonant frequency of approximately 25 MHz. Experimental characterization of the fabricated actuator showed a cumulative cantilever deflection of 160 μm for three repeated RF ON-OFF cycles at 0.6 W input power. The device was loaded with a dye solution and immersed in DI water to demonstrate wireless drug release. The qualitative result shows the successful release of the dye solution from the device reservoir. The release rate can be controlled by tuning the RF input power. We achieved a maximum average release rate of ∼0.1 μl s-1. We further conducted an in vitro study with human tumor cells (HeLa) to demonstrate the proof of concept of the developed device. The experiments show promising results towards the intended drug delivery application.
    Matched MeSH terms: Dimethylpolysiloxanes/chemistry*
  6. Ataollahi F, Pramanik S, Moradi A, Dalilottojari A, Pingguan-Murphy B, Wan Abas WA, et al.
    J Biomed Mater Res A, 2015 Jul;103(7):2203-13.
    PMID: 24733741 DOI: 10.1002/jbm.a.35186
    Extracellular environments can regulate cell behavior because cells can actively sense their mechanical environments. This study evaluated the adhesion, proliferation and morphology of endothelial cells on polydimethylsiloxane (PDMS)/alumina (Al2 O3 ) composites and pure PDMS. The substrates were prepared from pure PDMS and its composites with 2.5, 5, 7.5, and 10 wt % Al2 O3 at a curing temperature of 50°C for 4 h. The substrates were then characterized by mechanical, structural, and morphological analyses. The cell adhesion, proliferation, and morphology of cultured bovine aortic endothelial (BAEC) cells on substrate materials were evaluated by using resazurin assay and 1,1'-dioctadecyl-1,3,3,3',3'-tetramethylindocarbocyanine perchlorate-acetylated LDL (Dil-Ac-LDL) cell staining, respectively. The composites (PDMS/2.5, 5, 7.5, and 10 wt % Al2 O3 ) exhibited higher stiffness than the pure PDMS substrate. The results also revealed that stiffer substrates promoted endothelial cell adhesion and proliferation and also induced spread morphology in the endothelial cells compared with lesser stiff substrates. Statistical analysis showed that the effect of time on cell proliferation depended on stiffness. Therefore, this study concludes that the addition of different Al2 O3 percentages to PDMS elevated substrate stiffness which in turn increased endothelial cell adhesion and proliferation significantly and induced spindle shape morphology in endothelial cells.
    Matched MeSH terms: Dimethylpolysiloxanes/chemistry*
  7. Selvakumar M, Srivastava P, Pawar HS, Francis NK, Das B, Sathishkumar G, et al.
    ACS Appl Mater Interfaces, 2016 Feb 17;8(6):4086-100.
    PMID: 26799576 DOI: 10.1021/acsami.5b11723
    Guided bone regeneration (GBR) scaffolds are futile in many clinical applications due to infection problems. In this work, we fabricated GBR with an anti-infective scaffold by ornamenting 2D single crystalline bismuth-doped nanohydroxyapatite (Bi-nHA) rods onto segmented polyurethane (SPU). Bi-nHA with high aspect ratio was prepared without any templates. Subsequently, it was introduced into an unprecedented synthesized SPU matrix based on dual soft segments (PCL-b-PDMS) of poly(ε-caprolactone) (PCL) and poly(dimethylsiloxane) (PDMS), by an in situ technique followed by electrospinning to fabricate scaffolds. For comparison, undoped pristine nHA rods were also ornamented into it. The enzymatic ring-opening polymerization technique was adapted to synthesize soft segments of PCL-b-PDMS copolymers of SPU. Structure elucidation of the synthesized polymers is done by nuclear magnetic resonance spectroscopy. Sparingly, Bi-nHA ornamented scaffolds exhibit tremendous improvement (155%) in the mechanical properties with excellent antimicrobial activity against various human pathogens. After confirmation of high osteoconductivity, improved biodegradation, and excellent biocompatibility against osteoblast cells (in vitro), the scaffolds were implanted in rabbits by subcutaneous and intraosseous (tibial) sites. Various histological sections reveal the signatures of early cartilage formation, endochondral ossification, and rapid bone healing at 4 weeks of the critical defects filled with ornamented scaffold compared to SPU scaffold. This implies osteogenic potential and ability to provide an adequate biomimetic microenvironment for mineralization for GBR of the scaffolds. Organ toxicity studies further confirm that no tissue architecture abnormalities were observed in hepatic, cardiac, and renal tissue sections. This finding manifests the feasibility of fabricating a mechanically adequate nanofibrous SPU scaffold by a biomimetic strategy and the advantages of Bi-nHA ornamentation in promoting osteoblast phenotype progression with microbial protection (on-demand) for GBR applications.
    Matched MeSH terms: Dimethylpolysiloxanes/chemistry
  8. Soh SC, Abdullah MP
    Environ Monit Assess, 2007 Jan;124(1-3):39-50.
    PMID: 16967208
    A field investigation was conducted at all water treatment plants throughout 11 states and Federal Territory in Peninsular Malaysia. The sampling points in this study include treatment plant operation, service reservoir outlet and auxiliary outlet point at the water pipelines. Analysis was performed by solid phase micro-extraction technique with a 100 microm polydimethylsiloxane fibre using gas chromatography with mass spectrometry detection to analyse 54 volatile organic compounds (VOCs) of different chemical families in drinking water. The concentration of VOCs ranged from undetectable to 230.2 microg/l. Among all of the VOCs species, chloroform has the highest concentration and was detected in all drinking water samples. Average concentrations of total trihalomethanes (THMs) were almost similar among all states which were in the range of 28.4--33.0 microg/l. Apart from THMs, other abundant compounds detected were cis and trans-1,2-dichloroethylene, trichloroethylene, 1,2-dibromoethane, benzene, toluene, ethylbenzene, chlorobenzene, 1,4-dichlorobenzene and 1,2-dichloro - benzene. Principal component analysis (PCA) with the aid of varimax rotation, and parallel factor analysis (PARAFAC) method were used to statistically verify the correlation between VOCs and the source of pollution. The multivariate analysis pointed out that the maintenance of auxiliary pipelines in the distribution systems is vital as it can become significant point source pollution to Malaysian drinking water.
    Matched MeSH terms: Dimethylpolysiloxanes/chemistry
  9. Chai M, Tan G, Lal A
    Anal Sci, 2008 Feb;24(2):273-6.
    PMID: 18270422
    A headspace solid-phase microextraction method has been developed for the determination of 8 pesticides in vegetables and fruits by using gas chromatography with an electron capture detector. Two types of fibers (polyacrylate, 85 microm and polydimethylsiloxane, 100 microm) have been assayed and compared. The main factors: extraction and desorption parameters, ionic strength, and the effects of dilution and organic solvents, were studied and optimized. The optimized procedures resulted in more than 80% recovery for all the investigated vegetable and fruit samples with RSD values below 10%.
    Matched MeSH terms: Dimethylpolysiloxanes/chemistry
  10. Ghanim MH, Najimudin N, Ibrahim K, Abdullah MZ
    IET Nanobiotechnol, 2014 Jun;8(2):77-82.
    PMID: 25014078 DOI: 10.1049/iet-nbt.2012.0044
    Miniaturisation of microchip capillary electrophoresis (MCE) is becoming an increasingly important research topic, particularly in areas related to micro total analysis systems or lab on a chip. One of the important features associated with the miniaturised MCE system is the portable power supply unit. In this work, a very low electric field MCE utilising an amperometric detection scheme was designed for use in DNA separation. The device was fabricated from a glass/polydimethylsiloxane hybrid engraved microchannel with platinum electrodes sputtered onto a glass substrate. Measurement was based on a three-electrode arrangement, and separation was achieved using a very low electric field of 12 V/cm and sample volume of 1.5 µl. The device was tested using two commercial DNA markers of different base pair sizes. The results are in agreement with conventional electrophoresis, but with improved resolution. The sensitivity consistently higher than 100 nA, and the separation time approximately 45 min, making this microchip an ideal tool for DNA analysis.
    Matched MeSH terms: Dimethylpolysiloxanes/chemistry
  11. Choi JR, Liu Z, Hu J, Tang R, Gong Y, Feng S, et al.
    Anal Chem, 2016 06 21;88(12):6254-64.
    PMID: 27012657 DOI: 10.1021/acs.analchem.6b00195
    In nucleic acid testing (NAT), gold nanoparticle (AuNP)-based lateral flow assays (LFAs) have received significant attention due to their cost-effectiveness, rapidity, and the ability to produce a simple colorimetric readout. However, the poor sensitivity of AuNP-based LFAs limits its widespread applications. Even though various efforts have been made to improve the assay sensitivity, most methods are inappropriate for integration into LFA for sample-to-answer NAT at the point-of-care (POC), usually due to the complicated fabrication processes or incompatible chemicals used. To address this, we propose a novel strategy of integrating a simple fluidic control strategy into LFA. The strategy involves incorporating a piece of paper-based shunt and a polydimethylsiloxane (PDMS) barrier to the strip to achieve optimum fluidic delays for LFA signal enhancement, resulting in 10-fold signal enhancement over unmodified LFA. The phenomena of fluidic delay were also evaluated by mathematical simulation, through which we found the movement of fluid throughout the shunt and the tortuosity effects in the presence of PDMS barrier, which significantly affect the detection sensitivity. To demonstrate the potential of integrating this strategy into a LFA with sample-in-answer-out capability, we further applied this strategy into our prototype sample-to-answer LFA to sensitively detect the Hepatitis B virus (HBV) in clinical blood samples. The proposed strategy offers great potential for highly sensitive detection of various targets for wide application in the near future.
    Matched MeSH terms: Dimethylpolysiloxanes/chemistry*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links