METHODS AND STUDY DESIGN: We searched Medline, Embase, Cochrane Central Registry of Controlled Trials and CINAHL. Clinical trials were eligible if they compared palm oil-rich diets with diets rich in MUFAs or PUFAs. We pooled results of included studies using a random effects model and assessed the quality of the evidence and certainty of conclusions using the GRADE approach.
RESULTS: Intake of palm oil intake compared to oils rich in MUFA was associated with increased levels of total cholesterol (TC) [mean difference (MD)=0.27 mmol/L; 95% CI 0.08 to 0.45], LDL-C (MD=0.20 mmol/L; 95% CI 0.02 to 0.37) and HDL-C (MD=0.06 mmol/L; 95% CI 0.02 to 0.10). Similarly, for comparison with oils rich in PUFAs, palm oil showed increased in TC (MD=0.38 mmol/L; 95% CI 0.14 to 0.62), LDL-C (MD= 0.44 mmol/L; 95% CI 0.01 to 0.88) and HDL-C (MD=0.08 mmol/L; 95% CI 0.03 to 0.13). For both comparisons, there were no significant effects on triglycerides.
CONCLUSIONS: Even though palm oil increases marginally the level of serum lipids, the evidence is mostly of low to moderate quality.
DESIGN: Cross-sectional analysis.
SETTING: The Malaysian Health and Adolescents Longitudinal Research Team (MyHeART) study.
PARTICIPANTS: Fifteen-year-old secondary school children who have given consent and who participated in the MyHeART study in 2014.
PRIMARY OUTCOME MEASURE: Muscle strength was measured in relation to dietary intake (energy and macronutrients) and physical activity by using a hand grip dynamometer.
RESULTS: Among the 1012 participants (395 male; 617 female), the hand grip strength of the males was higher than that of the females (27.08 kg vs 18.63 kg; p<0.001). Also, males were more active (2.43vs2.12; p<0.001) and consumed a higher amount of energy (2047 kcal vs 1738 kcal; p<0.001), carbohydrate (280.71 g vs 229.31 g; p<0.001) and protein (1.46 g/kg body weight (BW) vs 1.35 g/kg BW; p<0.168). After controlling for ethnicity, place of residency and body mass index, there was a positive relationship between hand grip strength and the intake of energy (r=0.14; p=0.006), carbohydrate (r=0.153; p=0.002) and fat (r=0.124; p=0.014) and the physical activity score (r=0.170; p=0.001) and a negative relationship between hand grip strength and the intake of protein (r=-0.134; p=0.008), for males. However, this was not observed among females.
CONCLUSIONS: Energy, carbohydrate and fat intakes and physical activity score were positively correlated with hand grip strength while protein intake was negatively correlated with hand grip strength in males but not in females.
OBJECTIVE: To assess the association of premenopausal and postmenopausal breast cancer risk with fat and fat subtypes intake.
METHODOLOGY: This is a population based case-control study conducted in Kuala Lumpur, Malaysia from January 2006 to December 2007. Food intake pattern was collected from 382 breast cancer patients and 382 control group via an interviewer-administered food frequency questionnaire. Logistic regression was used to compute odds ratios (OR) with 95% confidence intervals (CI) and a broad range of potential confounders was included in analysis.
RESULTS: This study showed that both premenopausal and postmenopausal breast cancer risk did not increase significantly with greater intake of total fat [quartile (Q) 4 versus Q1 OR=0.76, 95% CI, 0.23-2.45 and OR=1.36, 95% CI, 0.30-3.12], saturated fat (ORQ4 to Q1=1.43, 95% CI, 0.51-3.98 and ORQ4 to Q1=1.75, 95% CI, 0.62-3.40), monounsaturated fat (ORQ4 to Q1=0.96, 95% CI, 0.34-1.72 and ORQ4 to Q1=1.74, 95% CI, 0.22-2.79), polyunsaturated fat (ORQ4 to Q1=0.64, 95% CI, 0.23-1.73 and ORQ4 to Q1=0.74, 95% CI, 0.39-1.81), n-3 polyunsaturated fat (ORQ4 to Q1=1.10, 95% CI, 0.49-2.48 and ORQ4 to Q1=0.78, 95% CI, 0.28-2.18), n-6 polyunsaturated fat (ORQ4 to Q1=0.67, 95% CI, 0.24-1.84 and ORQ4 to Q1=0.71, 95% CI, 0.29-1.04) or energy intake (ORQ4 to Q1=1.52, 95% CI, 0.68-3.38 and ORQ4 to Q1=2.21, 95% CI, 0.93-3.36).
CONCLUSION: Total fat and fat subtypes were not associated with pre- and postmenopausal breast cancer risk after controlling for age, other breast cancer risk factors and energy intake. Despite the lack of association, the effects of total fat and fat subtypes intake during premenopausal years towards postmenopausal breast cancer risk still warrant investigation.
METHOD: This is a cross-sectional study of 65 Malay obese class I and class II adults aged 20-62 years (21 male, 44 female) from sub-urban areas of Malaysia. Overnight fasting venous blood samples were obtained to determine the triglyceride level (mmol/L). Subjects were classified into either normal or elevated triglyceride level groups based on the triglyceride level (normal < 1.6 mmol/L, elevated > 1.7 mmol/L). Unhealthy lifestyle behaviors, defined as smoking status, hours per day spent on sitting passively and sitting with active motion, and the amount of saturated fat, mono-unsaturated and polyunsaturated fat from dietary intake, were measured from 24-h dietary intake and physical activity recall. We compare the variables of unhealthy lifestyle behaviors between subjects with normal and elevated triglyceride level using independent samples t-test.
RESULTS: Among 65 obese class I and II adults, 16 subjects (24.6%) were found to have elevated triglyceride levels (mean ± standard deviation of body mass index 31.89 ± 3.29 kg/m2). There are significant differences between subjects having normal and elevated triglyceride level with gender, marital status, the number of children, smoking status, weight and monounsaturated fat intake (all P-values < .05).
CONCLUSIONS: The findings of this study highlighted elevated triglyceride level in obese adults might be influenced by unhealthy lifestyle behaviors. We suggest that lifestyle modification intervention is appropriate to prevent cardiovascular disease among Malay obese class I and II adults.
METHODS: This human postprandial study evaluated 3 edible fat blends with differing polyunsaturated to saturated fatty acids (P/S) ratios (POL = 0.27, AHA = 1.00, PCAN = 1.32). A cross-over design included mildly hypercholestrolemic subjects (9 men and 6 women) preconditioned on test diets fats at 31% energy for 7 days prior to the postprandial challenge on the 8th day with 50 g test fat. Plasma lipids and lipoproteins were monitored at 0, 1.5, 3.5, 5.5 and 7 hr.
RESULTS: Plasma triacylglycerol (TAG) concentrations in response to POL, AHA or PCAN meals were not significant for time x test meal interactions (P > 0.05) despite an observed trend (POL > AHA > PCAN). TAG area-under-the-curve (AUC) increased by 22.58% after POL and 7.63% after PCAN compared to AHA treatments (P > 0.05). Plasma total cholesterol (TC) response was not significant between meals (P > 0.05). Varying P/S ratios of test meals significantly altered prandial high density lipoprotein-cholesterol (HDL-C) concentrations (P AHA > PCAN). Paired comparisons was significant between POL vs PCAN (P = 0.009) but not with AHA or between AHA vs PCAN (P > 0.05). A significantly higher HDL-C AUC for POL vs AHA (P = 0.015) and PCAN (P = 0.001) was observed. HDL-C AUC increased for POL by 25.38% and 16.0% compared to PCAN and AHA respectively. Plasma low density lipoprotein-cholesterol (LDL-C) concentrations was significant (P = 0.005) between meals and significantly lowest after POL meal compared to PCAN (P = 0.004) and AHA (P > 0.05) but not between AHA vs PCAN (P > 0.05). AUC for LDL-C was not significant between diets (P > 0.05). Palmitic (C16:0), oleic (C18:1), linoleic (C18:2) and linolenic (C18:3) acids in TAGs and cholesteryl esters were significantly modulated by meal source (P