MATERIALS AND METHODS: Rhesus macaque choroid retinal endothelial cell line (RF/6A) cells were cultivated in normal glucose (NG) and high glucose (HG) conditions. The mRNA expression of miR-424 and Cyclin D1 (CCND1) was quantified using qPCR, and the protein quantity of CCND1 was detected using Western Blot. miR-424 mimics, miR-424 inhibitors, miR-424 inhibitor+ siRNA-CCND1 or vehicle molecules were transfected into RF/6A cells. MTT test was used to assess cell proliferation, and flow cytometric analysis was used to assess cell cycle. The interaction between miR-424 and CCND1 was predicted using bioinformatics and validated using dual luciferase reporter analysis.
RESULTS: miR-424 was up-regulated, and cell viability was reduced in HG compared to NG. By reversing the expression of miR-424 in certain situations, the phenotypes can be changed. CCND1 has been identified as a miR-424 target gene, and it may be regulated at the transcriptional and translational levels. Manipulation of silencing CCND1 can counteract the effect of transfecting miR-424 inhibitor into RF/6A cells under HG such as proliferation stimulation.
CONCLUSIONS: Our findings indicate that miR-424 plays an important role in hyperglycemia induced ARPE-19 cells damage, and it could be a new therapeutic target for DR by preventing retinal vascular cells from HG-induced injury.
PURPOSE: This study evaluated differences of TPC and TNF-α concentrations in tears at different severity of NPDR among participants with diabetes in comparison with normal participants.
METHODS: A total of 75 participants were categorized based on Early Treatment for Diabetic Retinopathy Study scale, with 15 participants representing each group, namely, normal, diabetes without retinopathy, mild NPDR, moderate NPDR, and severe NPDR. All participants were screened using McMonnies questionnaire. Refraction was conducted subjectively. Visual acuity was measured using a LogMAR chart. Twenty-five microliters of basal tears was collected using glass capillary tubes. Total protein concentration and TNF-α concentrations were determined using Bradford assay and enzyme-linked immunosorbent assay, respectively.
RESULTS: Mean ± SD age of participants (n = 75) was 57.88 ± 4.71 years, and participants scored equally in McMonnies questionnaire (P = .90). Mean visual acuity was significantly different in severe NPDR (P = .003). Mean tear TPC was significantly lower, and mean tear TNF-α concentration was significantly higher in moderate and severe NPDR (P < .001). Mean ± SD tear TPC and TNF-α concentrations for normal were 7.10 ± 1.53 and 1.39 ± 0.24 pg/mL; for diabetes without retinopathy, 6.37 ± 1.65 and 1.53 ± 0.27 pg/mL; for mild NPDR, 6.32 ± 2.05 and 1.60 ± 0.21 pg/mL; for moderate NPDR, 3.88 ± 1.38 and 1.99 ± 0.05 pg/mL; and for severe NPDR, 3.64 ± 1.26 and 2.21 ± 0.04 pg/mL, respectively. Tear TPC and TNF-α concentrations were significantly correlated (r = -0.50, P < .0001). Visual acuity was significantly correlated with tear TPC (r = -0.236, P = .04) and TNF-α concentrations (r = 0.432, P < .0001).
CONCLUSIONS: This cross-sectional study identified differences in tear TPC and TNF-α concentrations with increasing severity of NPDR.