METHODS: Bayesian analysis of 3904 critically ill adult patients expected to receive invasive ventilation > 24 h and enrolled in a multinational randomized controlled trial comparing early DEX with usual care sedation.
RESULTS: HTE was assessed according to age and clusters (based on 12 baseline characteristics) using a Bayesian hierarchical models. DEX was associated with lower 90-day mortality compared to usual care in patients > 65 years (odds ratio [OR], 0.83 [95% credible interval [CrI] 0.68-1.00], with 97.7% probability of reduced mortality across broad categories of illness severity. Conversely, the probability of increased mortality in patients ≤ 65 years was 98.5% (OR 1.26 [95% CrI 1.02-1.56]. Two clusters were identified: cluster 1 (976 patients) mostly operative, and cluster 2 (2346 patients), predominantly non-operative. There was a greater probability of benefit with DEX in cluster 1 (OR 0.86 [95% CrI 0.65-1.14]) across broad categories of age, with 86.4% probability that DEX is more beneficial in cluster 1 than cluster 2.
CONCLUSION: In critically ill mechanically ventilated patients, early sedation with dexmedetomidine exhibited a high probability of reduced 90-day mortality in older patients regardless of operative or non-operative cluster status. Conversely, a high probability of increased 90-day mortality was observed in younger patients of non-operative status. Further studies are needed to confirm these findings.
Materials and methods: Eighty-four patients were randomly divided into two groups receiving either study drug infusion. Anxiety
score, level of sedation using the Bispectral Index and Observer’s Assessment of Alertness and Sedation, hemodynamic stability, and
overall patient’s feedback on anxiolysis were assessed.
Results: Both groups showed a significant drop in mean anxiety score at 10 and 30 min after starting surgery. Difference in median
anxiety scores showed a significant reduction in anxiety score at the end of the surgery in the dexmedetomidine group compared to the
propofol group. Dexmedetomidine and propofol showed a significant drop in mean arterial pressure in the first 30 min and first 10 min
respectively. Both drugs demonstrated a significant drop in heart rate in the first 20 min from baseline after starting the drug infusion.
Patients in the dexmedetomidine group (76.20%) expressed statistically excellent feedback on anxiolysis compared to patients in the
propofol group (45.20%).
Conclusion: Dexmedetomidine infusion was found to significantly reduce anxiety levels at the end of surgery compared to propofol
during regional anesthesia.
OBJECTIVES: To present the protocol and analysis plan of a large randomised clinical trial investigating the effect of a sedation strategy, in critically ill patients who are mechanically ventilated, based on a protocol targeting light sedation using dexmedetomidine as the primary sedative, termed "early goal-directed sedation", compared with usual practice.
METHODS: This is a multinational randomised clinical trial in adult intensive care patients expected to require mechanical ventilation for longer than 24 hours. The main exclusion criteria include suspected or proven primary brain pathology or having already been intubated or sedated in an intensive care unit for longer than 12 hours. Randomisation occurs via a secured website with baseline stratification by site and suspected or proven sepsis. The primary outcome is 90-day all-cause mortality. Secondary outcomes include death, institutional dependency, cognitive function and health-related quality of life 180 days after randomisation, as well as deliriumfree, coma-free and ventilation-free days at 28 days after randomisation. A predefined subgroup analysis will also be conducted. Analyses will be on an intention-to-treat basis and in accordance with this pre-specified analysis plan.
CONCLUSION: SPICE III is an ongoing large scale clinical trial. Once completed, it will inform sedation practice in critically ill patients who are ventilated.
METHODS: Sixty patients were randomised to receive IV dexmedetomidine 0.5 μg.kg-1 (Group DEX, n = 30) or IV saline (Group P, n = 30). General anaesthesia was maintained with Sevoflurane: oxygen: air, titrated to BIS 40-60. Pain intensity, sedation, rescue analgesics, nausea/vomiting and resumption of daily activities were recorded at 1 h, and postoperative day (POD) 1-5.
RESULTS: Group DEX patients had significant reduction in sevoflurane minimum alveolar concentration (MAC), mean (SD) DEX vs. Placebo 0.6 (0.2) vs. 0.9 (0.1), p = 0.037; reduced postoperative resting pain at 1 h (VAS 0-10) (mean (SD) 1.00 (1.84) vs. 2.63 (2.78), p = 0.004), POD 1 (mean (SD) 1.50 (1.48) vs. 2.87 (2.72), p = 0.002), POD 2 (0.53 (0.97) vs. 1.73 (1.96), p = 0.001) and POD 3 (0.30 (0.75) vs. 0.89 (1.49), p = 0.001). DEX patients also had less pain on movement POD 1 (3.00 (2.12) vs. 4.30 (3.10), p = 0.043) and POD 2 (2.10 (1.98) vs. 3.10 (2.46), p = 0.040), with higher resumption of daily activities by 48 h compared to placebo, 87% vs. 63%, p = 0.04.
CONCLUSIONS: We conclude that a single dose of dexmedetomidine was a useful adjuvant in reducing MAC and postoperative pain (at 1 h and POD 1-3), facilitating faster return to daily activities by 48 h.
TRIAL REGISTRATION: The Australian New Zealand Clinical Trials Registry (ANZCTR), ACTRN12617001120369 , 31st July 2017, retrospectively registered.
DESIGN: Randomized, prospective, double-blinded study.
SETTING: University-based tertiary referral center.
PATIENTS: Thirty claustrophobic adults with American Society of Anesthesiologists physical status I and II who were planned for MRI.
INTERVENTIONS: Patients were randomly assigned to target-controlled infusion propofol or dexmedetomidine loading followed by maintenance dose for procedural sedation.
MEASUREMENTS AND MAIN RESULTS: The primary end point was adequate reduction in patient anxiety levels to allow successful completion of the MRI sequence. Both methods of sedation adequately reduced anxiety levels in visual analog scale scores and Spielberger Strait Test Anxiety Inventory (P
Methods: Sixty-four patients aged 18-60 years, American Society of Anaesthesiologists (ASA) class I-II who underwent elective surgery were randomised to a Marsh group (n= 32) or Schnider group (n= 32). All the patients received a 1 μg/kg loading dose of dexmedetomidine, followed by TCI anaesthesia with remifentanil at 2 ng/mL. After the effect-site concentration (Ce) of remifentanil reached 2 ng/mL, propofol TCI induction was started. Anaesthesia induction commenced in the Marsh group at a target plasma concentration (Cpt) of 2 μg/mL, whereas it started in the Schnider group at a target effect-site concentration (Cet) of 2 μg/mL. If induction was delayed after 3 min, the target concentration (Ct) was gradually increased to 0.5 μg/mL every 30 sec until successful induction. The Ct at successful induction, induction time, Ce at successful induction and haemodynamic parameters were recorded.
Results: The Ct for successful induction in the Schnider group was significantly lower than in the Marsh group (3.48 [0.90] versus 4.02 [0.67] μg/mL;P= 0.01). The induction time was also shorter in the Schnider group as compared with the Marsh group (134.96 [50.91] versus 161.59 [39.64]) sec;P= 0.02). There were no significant differences in haemodynamic parameters and Ce at successful induction.
Conclusion: In the between-group comparison, dexmedetomidine reduced the Ct requirement for induction and shortened the induction time in the Schnider group. The inclusion of baseline groups without dexmedetomidine in a four-arm comparison of the two models would enhance the validity of the findings.
METHOD: A randomized controlled open-label study was performed at the cardiothoracic intensive care unit of Penang Hospital, Malaysia. A total of 28 patients who underwent cardiac surgeries were randomly assigned to receive either dexmedetomidine or morphine. Both groups were similar in terms of preoperative baseline characteristics. Efficacy measures included sedation scores and pain intensity and requirements for additional sedative/analgesic. Mean heart rate and arterial blood pressure were used as safety measures. Other measures were additional inotropes, extubation time and other concurrent medications.
RESULTS: The mean dose of dexmedetomidine infused was 0.12 [SD 0.03] μg kg⁻¹ h⁻¹, while that of morphine was 13.2 [SD 5.84] μg kg⁻¹ h⁻¹. Dexmedetomidine group showed more benefits in sedation and pain levels, additional sedative/analgesic requirements, and extubation time. No significant differences between the two groups for the outcome measures, except heart rate, which was significantly lower in the dexmedetomidine group.
CONCLUSION: This preliminary study suggests that dexmedetomidine was at least comparable to morphine in terms of efficacy and safety among cardiac surgery patients. Further studies with larger samples are recommended in order to determine the significant effects of the outcome measures.
OBJECTIVES: To assess the effectiveness and adverse effects of chloral hydrate as a sedative agent for non-invasive neurodiagnostic procedures in children.
SEARCH METHODS: We used the standard search strategy of the Cochrane Epilepsy Group. We searched MEDLINE (OVID SP) (1950 to July 2017), the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library, Issue 7, 2017), Embase (1980 to July 2017), and the Cochrane Epilepsy Group Specialized Register (via CENTRAL) using a combination of keywords and MeSH headings.
SELECTION CRITERIA: We included randomised controlled trials that assessed chloral hydrate agent against other sedative agent(s), non-drug agent(s), or placebo for children undergoing non-invasive neurodiagnostic procedures.
DATA COLLECTION AND ANALYSIS: Two review authors independently assessed the studies for their eligibility, extracted data, and assessed risk of bias. Results were expressed in terms of risk ratio (RR) for dichotomous data, mean difference (MD) for continuous data, with 95% confidence intervals (CIs).
MAIN RESULTS: We included 13 studies with a total of 2390 children. The studies were all conducted in hospitals that provided neurodiagnostic services. Most studies assessed the proportion of sedation failure during the neurodiagnostic procedure, time for adequate sedation, and potential adverse effects associated with the sedative agent.The methodological quality of the included studies was mixed, as reflected by a wide variation in their 'Risk of bias' profiles. Blinding of the participants and personnel was not achieved in most of the included studies, and three of the 13 studies had high risk of bias for selective reporting. Evaluation of the efficacy of the sedative agents was also underpowered, with all the comparisons performed in single small studies.Children who received oral chloral hydrate had lower sedation failure when compared with oral promethazine (RR 0.11, 95% CI 0.01 to 0.82; 1 study, moderate-quality evidence). Children who received oral chloral hydrate had a higher risk of sedation failure after one dose compared to those who received intravenous pentobarbital (RR 4.33, 95% CI 1.35 to 13.89; 1 study, low-quality evidence), but after two doses there was no evidence of a significant difference between the two groups (RR 3.00, 95% CI 0.33 to 27.46; 1 study, very low-quality evidence). Children who received oral chloral hydrate appeared to have more sedation failure when compared with music therapy, but the quality of evidence was very low for this outcome (RR 17.00, 95% CI 2.37 to 122.14; 1 study). Sedation failure rates were similar between oral chloral hydrate, oral dexmedetomidine, oral hydroxyzine hydrochloride, and oral midazolam.Children who received oral chloral hydrate had a shorter time to achieve adequate sedation when compared with those who received oral dexmedetomidine (MD -3.86, 95% CI -5.12 to -2.6; 1 study, moderate-quality evidence), oral hydroxyzine hydrochloride (MD -7.5, 95% CI -7.85 to -7.15; 1 study, moderate-quality evidence), oral promethazine (MD -12.11, 95% CI -18.48 to -5.74; 1 study, moderate-quality evidence), and rectal midazolam (MD -95.70, 95% CI -114.51 to -76.89; 1 study). However, children with oral chloral hydrate took longer to achieve adequate sedation when compared with intravenous pentobarbital (MD 19, 95% CI 16.61 to 21.39; 1 study, low-quality evidence) and intranasal midazolam (MD 12.83, 95% CI 7.22 to 18.44; 1 study, moderate-quality evidence).No data were available to assess the proportion of children with successful completion of neurodiagnostic procedure without interruption by the child awakening. Most trials did not assess adequate sedation as measured by specific validated scales, except in the comparison of chloral hydrate versus intranasal midazolam and oral promethazine.Compared to dexmedetomidine, chloral hydrate was associated with a higher risk of nausea and vomiting (RR 12.04 95% CI 1.58 to 91.96). No other adverse events were significantly associated with chloral hydrate (including behavioural change, oxygen desaturation) although there was an increased risk of adverse events overall (RR 7.66, 95% CI 1.78 to 32.91; 1 study, low-quality evidence).
AUTHORS' CONCLUSIONS: The quality of evidence for the comparisons of oral chloral hydrate against several other methods of sedation was very variable. Oral chloral hydrate appears to have a lower sedation failure rate when compared with oral promethazine for children undergoing paediatric neurodiagnostic procedures. The sedation failure was similar for other comparisons such as oral dexmedetomidine, oral hydroxyzine hydrochloride, and oral midazolam. When compared with intravenous pentobarbital and music therapy, oral chloral hydrate had a higher sedation failure rate. However, it must be noted that the evidence for the outcomes for the comparisons of oral chloral hydrate against intravenous pentobarbital and music therapy was of very low to low quality, therefore the corresponding findings should be interpreted with caution.Further research should determine the effects of oral chloral hydrate on major clinical outcomes such as successful completion of procedures, requirements for additional sedative agent, and degree of sedation measured using validated scales, which were rarely assessed in the studies included in this review. The safety profile of chloral hydrate should be studied further, especially the risk of major adverse effects such as bradycardia, hypotension, and oxygen desaturation.
OBJECTIVE: The aim of this systematic review and meta-analysis is to compare the effectiveness of amiodarone, dexmedetomidine and magnesium in preventing JET following congenital heart surgery.
METHODS: This meta-analysis was conducted according to the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) statement, where 11 electronic databases were searched from date of inception to August 2020. The incidence of JET was calculated with the relative risk of 95% confidence interval (CI). Quality assessment of the included studies was assessed using the Consolidated Standards of Reporting Trials (CONSORT) 2010 statement.
RESULTS: Eleven studies met the predetermined inclusion criteria and were included in this meta-analysis. Amiodarone, dexmedetomidine and magnesium significantly reduced the incidence of postoperative JET [Amiodarone: risk ratio 0.34; I2= 0%; Z=3.66 (P=0.0002); 95% CI 0.19-0.60. Dexmedetomidine: risk ratio 0.34; I2= 0%; Z=4.77 (P<0.00001); 95% CI 0.21-0.52. Magnesium: risk ratio 0.50; I2= 24%; Z=5.08 (P<0.00001); 95% CI 0.39-0.66].
CONCLUSION: All three drugs show promise in reducing the incidence of JET. Our systematic review found that dexmedetomidine is better in reducing the length of ICU stays as well as mortality. In addition, dexmedetomidine also has the least pronounced side effects among the three. However, it should be noted that this conclusion was derived from studies with small sample sizes. Therefore, dexmedetomidine may be considered as the drug of choice for preventing JET.